www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Partialsumme berechnen
Partialsumme berechnen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialsumme berechnen: Beispiel+Fragen
Status: (Frage) beantwortet Status 
Datum: 16:37 Mo 14.12.2009
Autor: bAbUm

Aufgabe
[mm] s_n=\summe_{k=2}^{n} \bruch{2}{k^2-1} [/mm]
[mm] \bruch{2}{k^2-1}= \bruch{2}{(k-1)(k+1)} [/mm]

[mm] =\bruch{A}{(k-1)}+ \bruch{B}{(k+1)} [/mm] (Partialbruchgleichung)

= [mm] \bruch{A(k+1)+B(k-1)}{(k-1)(k+1)} [/mm]

= [mm] \bruch{k(A+B)+(A-B)}{(k-1)(k+1)} [/mm]

Koeffizientenvergleich: [mm] \vektor{A+B=0 \\ A+B=2} [/mm] => A=1 ; B=-1

=> [mm] s_n=\summe_{k=2}^{n} \bruch{1}{k-1}-\summe_{k=2}^{n} \bruch{1}{k+1} [/mm]

Hallo

Wie schon das Diskussionsthema andeutet muss ich Partialsummen von reihen bestimmen. Nur fange ich da bei Null an.

puuh wo soll ich anfangen?
-Was muss ich tun...?

->Anscheinend den Nenner in linerafaktoren darstellen, richtig?

-Wie/wieso anschließend den Bruch "aufteilen"? (zur Partialbruchgleichung)

-Wieso A und B einsetzen? Was ist aus der 2 im Zähler geworden?

->es wird auf einen Nenner gebracht und ausmultipliziert

->Dann wird anscheinend aus nach k geordnet

-Koeffizientenvergleich: A+B=0 warum 0? A-B=2? und woher bekomme ich diese Gleichungen? aus dem Zähler?
wie komme ich dann am ende auf die Zähler und Nenner bei den beiden Folgen? Aus dem Koeffizientenvergleich?

Bin für jede hilfe dankbar!!


        
Bezug
Partialsumme berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Mo 14.12.2009
Autor: T_sleeper


> [mm]s_n=\summe_{k=2}^{n} \bruch{2}{k^2-1}[/mm]
>  [mm]\bruch{2}{k^2-1}= \bruch{2}{(k-1)(k+1)}[/mm]
>
> [mm]=\bruch{A}{(k-1)}+ \bruch{B}{(k+1)}[/mm] (Partialbruchgleichung)
>
> = [mm]\bruch{A(k+1)+B(k-1)}{(k-1)(k+1)}[/mm]
>
> = [mm]\bruch{k(A+B)+(A-B)}{(k-1)(k+1)}[/mm]
>  
> Koeffizientenvergleich: [mm]\vektor{A+B=0 \\ A+B=2}[/mm] => A=1 ;
> B=-1
>  
> => [mm]s_n=\summe_{k=2}^{n} \bruch{1}{k-1}-\summe_{k=2}^{n} \bruch{1}{k+1}[/mm]
>  
> Hallo
>  
> Wie schon das Diskussionsthema andeutet muss ich
> Partialsummen von reihen bestimmen. Nur fange ich da bei
> Null an.
>
> puuh wo soll ich anfangen?
>  -Was muss ich tun...?
>  
> ->Anscheinend den Nenner in linerafaktoren darstellen,
> richtig?
>  
> -Wie/wieso anschließend den Bruch "aufteilen"? (zur
> Partialbruchgleichung)
>  
> -Wieso A und B einsetzen? Was ist aus der 2 im Zähler
> geworden?
>  
> ->es wird auf einen Nenner gebracht und ausmultipliziert
>  
> ->Dann wird anscheinend aus nach k geordnet
>  
> -Koeffizientenvergleich: A+B=0 warum 0? A-B=2? und woher
> bekomme ich diese Gleichungen? aus dem Zähler?
>  wie komme ich dann am ende auf die Zähler und Nenner bei
> den beiden Folgen? Aus dem Koeffizientenvergleich?
>  
> Bin für jede hilfe dankbar!!
>  

Hallo,

du solltest dir vielleicht mal das []hier durchlesen. Wenn du nur das Verfahren verstehen willst, gehe am besten gleich zu den Beispielen.

Für deinen Fall helfe ich dir nochmal etwas genauer. Wir betrachten den Bruch einzeln, also:

[mm] \frac{2}{k^{2}-1}. [/mm]

Dass gilt: [mm] \frac{2}{k^{2}-1}=\frac{1}{k-1}-\frac{1}{k+1}, [/mm] kannst du ganz einfach nachrechnen (Hauptnenner und so...).

Jetzt das Verfahren wie man darauf kommt:

Berechne die Nullstellen des Nenners. Das geht hier ganz leicht, weil es eine binomische Formel ist.

Der Ansatz ist dann:

[mm] \frac{2}{k^{2}-1}=\frac{A}{k-1}+\frac{B}{k+1}, [/mm] wobei A und B Konstanten sind. Im Nenner steht hier jeweils eine Nullstelle von [mm] k^{2}-1. [/mm] Bei mehrfachen Nullstellen musst du aufpassen, siehe dazu auch in den Beispielen von wiki nach.

Jetzt bestimme A und B.

Es gilt: [mm] \frac{2}{k^{2}-1}=\frac{A}{k-1}+\frac{B}{k+1}\Leftrightarrow2=A(k+1)+B(k-1)=Ak+A+Bk-B=(A+B)k+(A-B). [/mm]

Jetzt kommt der Koeffizientenvergleich. Links steht nur [mm] 2=2k^{0}, [/mm] also kein [mm] k\Rightarrow(A+B)k=0\Rightarrow [/mm] A=-B.

Rechts steht als 0-te Potenz von k nur (A-B), also [mm] A-B=2=-B-B=-2B\Rightarrow B=-1\Rightarrow [/mm] A=1.

Damit folgt deine Partialbruchzerlegung.

Gruß Sleeper


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]