www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Partialbruchzg/ kompl.Nullstel
Partialbruchzg/ kompl.Nullstel < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzg/ kompl.Nullstel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Di 21.04.2009
Autor: Igor1

Hallo,

sei [mm] \integral_{}^{}{\bruch{5x^{2}-7x+20}{x^{3}-3x^{2}+12x-10} dx} [/mm]
gegeben. Die Nullstellen von dem Nenner sind  v=1, w= 1+3i, z= 1-3i.

Wie man die Partialruchzerlegung mit reellen Nullstellen macht, habe ich an einigen Beispielen gesehen: ungefähr sah das so aus
[mm] \bruch{A}{x-reelle Nullstelle} [/mm] + [mm] \bruch{B}{x-reelle Nullstelle}+\bruch{C}{x-reelle Nullstelle} [/mm] . Wenn jetzt die komplexen Nullstellen vorkommen, welchen Ansatz benutzt man dabei ? Denselben oder einen anderen?

MfG
Igor

        
Bezug
Partialbruchzg/ kompl.Nullstel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Di 21.04.2009
Autor: fred97


[]Hier ist das Ganze sehr schön erläutert

FRED





Bezug
                
Bezug
Partialbruchzg/ kompl.Nullstel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Di 21.04.2009
Autor: Igor1

Hallo fred97,

ich habe mittels der PBZ folgendes  raus: [mm] \integral_{}^{}{\bruch{5x^{2}-7x+20}{x^{3}-3x^{2}+12x-10} dx}= \integral_{}^{}{\bruch{2}{x-1}dx} [/mm] + [mm] \integral_{}^{}{\bruch{3x}{x^{2}-2x+10} dx}. [/mm]
Ich gehe davon aus, dass hier die PBZ endet.
Das erste Integral ist klar, wie berechnet man den zweiten Integral?

MfG
Igor

Bezug
                        
Bezug
Partialbruchzg/ kompl.Nullstel: erste Schritte
Status: (Antwort) fertig Status 
Datum: 21:00 Di 21.04.2009
Autor: Loddar

Hallo Igor!


[mm] $$\integral{\bruch{3x}{x^2-2x+10} \ dx} [/mm] \ = \ [mm] \bruch{3}{2}*\integral{\bruch{2x-2+2}{x^2-2x+10} \ dx} [/mm] \ = \ [mm] \bruch{3}{2}*\integral{\bruch{2x-2}{x^2-2x+10}+\bruch{2}{x^2-2x+10} \ dx} [/mm] \ = \ ...$$
Versuche den hinteren Bruch nun in die Form [mm] $\bruch{1}{(ax+b)^2+1}$ [/mm] zu bringen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]