www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Partialbruchzerlegung
Partialbruchzerlegung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 So 10.02.2013
Autor: Feli_na

Hallo,

also ich bin mal wieder völlig überfragt mit meinen Aufgaben. Wir machen grade Integralrechnung für reelle Funktionen. Das hatte man ja auch schon in der Schule und ich erinnere mich aus dem Mathe LK dass das alles nicht so schwer war, aber irgendwie steige ich da absolut nicht mehr hinter. Das ergibt für mich grade einfach keinen Sinn.
Jetzt bin ich grade seit echt über einer Stunde dabei so ein doofes Integral zu berechnen und es kommt wirklich nur Mist dabei raus.
[mm] \integral_{3}^{2}\bruch{x+3}{x^{2}+x} [/mm]
ich habe dann erst angefangen mit Substitution, was zu nichts geführt hat bei mir, dann Partialbruchzerlegung. Habe im Nenner erst einmal das x ausgeklammert und dann kann man daraus ja irgendwie [mm] \bruch{A}{x}+\bruch{B}{x+1} [/mm] machen. In der Vorlesung hat der das dann immer aufgelöst nach A und B und das sah ganz easy aus, aber da war im Zähler auch immer nur eine 1 und mein x+3 habe ich ja irgendwie gar nicht berücksichtigt jetzt.
Also im Ernst, ich verstehe das grade so gar nicht und aus irgendwelchen Lernvideos werde ich nicht schlauer. Kann mir jemand helfen und das wirklich für "Doofe" erklären, würde das echt gerne verstehen.

Danke

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 So 10.02.2013
Autor: Sax

Hi,

> Habe im Nenner erst einmal das x ausgeklammert und dann
> kann man daraus ja irgendwie [mm]\bruch{A}{x}+\bruch{B}{x+1}[/mm]
> machen.

Sehr gut soweit.

Fasse jetzt die beiden Brüche zusammen, das ergibt [mm] \bruch{A*(x+1) + B*x}{x*(x+1)} [/mm]
Sortiere jetzt im Zähler nach Potenzen von x :   (...)*x + (...) = x + 3  (dein ursprünglicher Zähler).
Durch Koeffizientenvergleich erhälst du jetzt (...) = 1  und (...) = 3.
Dieses lineare Gleichungssystem kannst du nach A und B auflösen.

Gruß Sax.

Bezug
        
Bezug
Partialbruchzerlegung: Alternative / Schranken?
Status: (Antwort) fertig Status 
Datum: 13:26 So 10.02.2013
Autor: Diophant

Hallo,

> Hallo,
>
> also ich bin mal wieder völlig überfragt mit meinen
> Aufgaben. Wir machen grade Integralrechnung für reelle
> Funktionen. Das hatte man ja auch schon in der Schule und
> ich erinnere mich aus dem Mathe LK dass das alles nicht so
> schwer war, aber irgendwie steige ich da absolut nicht mehr
> hinter. Das ergibt für mich grade einfach keinen Sinn.
> Jetzt bin ich grade seit echt über einer Stunde dabei so
> ein doofes Integral zu berechnen und es kommt wirklich nur
> Mist dabei raus.
> [mm]\integral_{3}^{2}\bruch{x+3}{x^{2}+x}[/mm]

Sicher, dass das Integral von 3 bis 2 geht? ;-)

> ich habe dann erst angefangen mit Substitution, was zu
> nichts geführt hat bei mir, dann Partialbruchzerlegung.
> Habe im Nenner erst einmal das x ausgeklammert und dann
> kann man daraus ja irgendwie [mm]\bruch{A}{x}+\bruch{B}{x+1}[/mm]
> machen. In der Vorlesung hat der das dann immer aufgelöst
> nach A und B und das sah ganz easy aus, aber da war im
> Zähler auch immer nur eine 1 und mein x+3 habe ich ja
> irgendwie gar nicht berücksichtigt jetzt.
> Also im Ernst, ich verstehe das grade so gar nicht und aus
> irgendwelchen Lernvideos werde ich nicht schlauer. Kann mir
> jemand helfen und das wirklich für "Doofe" erklären,
> würde das echt gerne verstehen.

Es wurde ja schon eine Antwort gegeben, zu der ich noch eine Alternative beisteuern möchte. Wenn man das Integral so aufteilt:

[mm]\integral{\bruch{x+3}{x^2+x} dx}=\bruch{1}{2}\integral{\bruch{2x+1}{x^2+x} dx}+\bruch{5}{2}\integral{\bruch{1}{x^2+x} dx}[/mm]

dann löst man das vordere Integral der Summe leicht per Substitution, und beim hinteren ist die Partialbruchzerlegung ein Stück einfacher geworden.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]