Partialbruchzerlegung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:01 So 10.02.2013 | Autor: | Feli_na |
Hallo,
also ich bin mal wieder völlig überfragt mit meinen Aufgaben. Wir machen grade Integralrechnung für reelle Funktionen. Das hatte man ja auch schon in der Schule und ich erinnere mich aus dem Mathe LK dass das alles nicht so schwer war, aber irgendwie steige ich da absolut nicht mehr hinter. Das ergibt für mich grade einfach keinen Sinn.
Jetzt bin ich grade seit echt über einer Stunde dabei so ein doofes Integral zu berechnen und es kommt wirklich nur Mist dabei raus.
[mm] \integral_{3}^{2}\bruch{x+3}{x^{2}+x}
[/mm]
ich habe dann erst angefangen mit Substitution, was zu nichts geführt hat bei mir, dann Partialbruchzerlegung. Habe im Nenner erst einmal das x ausgeklammert und dann kann man daraus ja irgendwie [mm] \bruch{A}{x}+\bruch{B}{x+1} [/mm] machen. In der Vorlesung hat der das dann immer aufgelöst nach A und B und das sah ganz easy aus, aber da war im Zähler auch immer nur eine 1 und mein x+3 habe ich ja irgendwie gar nicht berücksichtigt jetzt.
Also im Ernst, ich verstehe das grade so gar nicht und aus irgendwelchen Lernvideos werde ich nicht schlauer. Kann mir jemand helfen und das wirklich für "Doofe" erklären, würde das echt gerne verstehen.
Danke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:16 So 10.02.2013 | Autor: | Sax |
Hi,
> Habe im Nenner erst einmal das x ausgeklammert und dann
> kann man daraus ja irgendwie [mm]\bruch{A}{x}+\bruch{B}{x+1}[/mm]
> machen.
Sehr gut soweit.
Fasse jetzt die beiden Brüche zusammen, das ergibt [mm] \bruch{A*(x+1) + B*x}{x*(x+1)}
[/mm]
Sortiere jetzt im Zähler nach Potenzen von x : (...)*x + (...) = x + 3 (dein ursprünglicher Zähler).
Durch Koeffizientenvergleich erhälst du jetzt (...) = 1 und (...) = 3.
Dieses lineare Gleichungssystem kannst du nach A und B auflösen.
Gruß Sax.
|
|
|
|
|
Hallo,
> Hallo,
>
> also ich bin mal wieder völlig überfragt mit meinen
> Aufgaben. Wir machen grade Integralrechnung für reelle
> Funktionen. Das hatte man ja auch schon in der Schule und
> ich erinnere mich aus dem Mathe LK dass das alles nicht so
> schwer war, aber irgendwie steige ich da absolut nicht mehr
> hinter. Das ergibt für mich grade einfach keinen Sinn.
> Jetzt bin ich grade seit echt über einer Stunde dabei so
> ein doofes Integral zu berechnen und es kommt wirklich nur
> Mist dabei raus.
> [mm]\integral_{3}^{2}\bruch{x+3}{x^{2}+x}[/mm]
Sicher, dass das Integral von 3 bis 2 geht?
> ich habe dann erst angefangen mit Substitution, was zu
> nichts geführt hat bei mir, dann Partialbruchzerlegung.
> Habe im Nenner erst einmal das x ausgeklammert und dann
> kann man daraus ja irgendwie [mm]\bruch{A}{x}+\bruch{B}{x+1}[/mm]
> machen. In der Vorlesung hat der das dann immer aufgelöst
> nach A und B und das sah ganz easy aus, aber da war im
> Zähler auch immer nur eine 1 und mein x+3 habe ich ja
> irgendwie gar nicht berücksichtigt jetzt.
> Also im Ernst, ich verstehe das grade so gar nicht und aus
> irgendwelchen Lernvideos werde ich nicht schlauer. Kann mir
> jemand helfen und das wirklich für "Doofe" erklären,
> würde das echt gerne verstehen.
Es wurde ja schon eine Antwort gegeben, zu der ich noch eine Alternative beisteuern möchte. Wenn man das Integral so aufteilt:
[mm]\integral{\bruch{x+3}{x^2+x} dx}=\bruch{1}{2}\integral{\bruch{2x+1}{x^2+x} dx}+\bruch{5}{2}\integral{\bruch{1}{x^2+x} dx}[/mm]
dann löst man das vordere Integral der Summe leicht per Substitution, und beim hinteren ist die Partialbruchzerlegung ein Stück einfacher geworden.
Gruß, Diophant
|
|
|
|