www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Partialbruchzerlegung
Partialbruchzerlegung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:04 So 11.07.2010
Autor: cosPhi

Hi,

In einem Paper habe ich folgende Formel:

[mm] \prod_{m=1}^{N_d} \frac{1}{(1-e^{\alpha_{(m)}}z^{-1})^{n_{(m)}}} = \sum_{m=1}^{N_d} \sum_{n=1}^{n_{(m)}} \frac{c_{m,n} }{(1-e^{\alpha_{(m)}}z^{-1})^{n_{(m)}}} [/mm]

Eigentlich handelt es sich dabei um eine triviale Partialbruchzerlegung. Aber ich krieg's einfach nicht hin! Ich schaffe es immer nur mit z als Koeffizienten und nicht mit [mm] z^{-1}... [/mm]

Allerdings würde ich es in dieser Form benötigen.

Auch Apart in Mathematica gibt mir die Lösung stets mit [mm] (z-e^{.}) [/mm] Paaren und nicht mit [mm] (1-e^{.}z^{-1})... [/mm]

Kann mir jemand sagen wie ich die Koeffizienten [mm] c_{m,n} [/mm] bestimme?

Und als Jackpot: Kann das Mathematica auch bzw wie?



        
Bezug
Partialbruchzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Di 13.07.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]