www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "z-transformation" - Partialbruchzerlegung
Partialbruchzerlegung < z-transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "z-transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Komplexe Nullstelle
Status: (Frage) beantwortet Status 
Datum: 22:00 Mo 19.03.2007
Autor: andytaschenrechner

Aufgabe
Aufgabe ist es eine Funktion aus dem z-Bereich in den Zeit-Bereich zurückzutransformieren (Schlagwort Z-Transformation). Auf dem Lösungsweg muss folgende Übertragungsfunktion in ihre Partialbrüche zerlegt werden:
[mm]H(z)[/mm] = [mm] \bruch{z^2}{z^2-\wurzel{3}z+1}[/mm].

In anderen ähnlichen Aufgaben hat es sich jedoch als einfacher herausgestellt zunächst die Funktion

[mm]\bruch{H(z)}{z}[/mm] = [mm] \bruch{z}{z^2-\wurzel{3}z+1}[/mm]
zu betrachten. Hiervon interessiert mich also die Partialbruchzerlegung!

Vorgehensweise wie immer:
1. Nullstellen des Nenners finden:

Also [mm]z^2-\wurzel{3}z+1[/mm] = [mm]0[/mm]

Nun die p,q-Formel benutzen:

[mm]z_{1,2}[/mm] = [mm]\bruch{\wurzel{3}}{2}\pm\wurzel{\bruch{3}{4}-1}[/mm]

Es ergeben sich folgende komplexe Nullstellen:

[mm]z_1[/mm] = [mm]\bruch{\wurzel{3}}{2}+\bruch{i}{2}[/mm]
[mm]z_2[/mm] = [mm]\bruch{\wurzel{3}}{2}-\bruch{i}{2}[/mm]

Also eine Zahl [mm]z[/mm] und ihre konjugiert komplexe [mm]z^{\*}[/mm]

Soweit so gut!

Aber weiter komm ich nicht!

Meine Versuche [mm]H(z)[/mm] durch Partialbrüche auszudrücken führten zu keiner Lösung, weil ich nicht wusste, wie ich den Nenner hinschreiben soll. Die Darstellung wie bei rein reellen Zahlen
[mm] \bruch{A}{(z+z_i)} [/mm]

ist wegen der komplexen Zahlen doch nicht anwendbar oder?

Ich habe im Internet allerdings eine mögliche Darstellung gefunden, welche mir aber auch nicht weiterhilft, da sie keine Vereinfachung des Terms gebracht hat:

Hierbei gilt für ein Paar Nullstellen [mm]z[/mm] und ihre konjugiert komplexe [mm]z^{\*}[/mm]
mit [mm] z [/mm] = [mm] a + ib [/mm]:

[mm]\bruch{H(z)}{z}[/mm] = [mm] \bruch{z}{z^2-\wurzel{3}z+1}[/mm] = [mm]\bruch{A*z+B}{(z-a)^2+b^2}[/mm]

Der Koeffizientenvergleich bringt A = 1 und B = 0, was mir nichts bringt, weil ich dann wieder bei meiner ursprünglichen Darstellung angelangt bin....


Ziel ist es mittels der Partialbruchzerlegung eine vereinfachte Darstellung von [mm]H(z)[/mm] zu finden. Diese Darstellung möchte ich dann mit einer Tabelle/Formelsammlung zur Z-Transformation abgleichen, In dieser Tabelle stehen Terme im Z-Bereich und deren Rücktransformierte!

Falls jemand näheres zur Z-Transformation wissen möchte muss dieser Wunsch nur geposted werden, ich werde dann alles zum Besten geben, was ich davon weiß =)


Vielen Dank für eure Hilfe,

Andy

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Mo 19.03.2007
Autor: schachuzipus

Hallo Andy,

ich denke, du kannst die PBZ ganz normal anwenden:

[mm] \bruch{H(z)}{z}=\bruch{z}{z^2-\wurzel{3}z+1} [/mm]

[mm] =\bruch{z}{\left(z-(\bruch{\wurzel{3}}{2}-\bruch{i}{2})\right)\left(z-(\bruch{\wurzel{3}}{2}+\bruch{i}{2})\right)}=\bruch{z}{(z-\bruch{\wurzel{3}}{2}+\bruch{i}{2})(z-\bruch{\wurzel{3}}{2}-\bruch{i}{2})}=\bruch{A}{z-\bruch{\wurzel{3}}{2}+\bruch{i}{2}}+\bruch{B}{z-\bruch{\wurzel{3}}{2}-\bruch{i}{2}} [/mm]

[mm] =\bruch{A(z-\bruch{\wurzel{3}}{2}-\bruch{i}{2})+B(z-\bruch{\wurzel{3}}{2}+\bruch{i}{2})}{\left(z-(\bruch{\wurzel{3}}{2}-\bruch{i}{2})\right)\left(z-(\bruch{\wurzel{3}}{2}+\bruch{i}{2})\right)}=\bruch{(A+B)z+(\bruch{1}{2}B(i-\wurzel{3})+\bruch{1}{2}A(-\wurzel{3}-i))}{z^2-\wurzel{3}z+1} [/mm]

Koeffizientenvergleich liefert:

(1) A+B=1 [mm] \Rightarrow [/mm] A=1-B

(2) [mm] \bruch{1}{2}B(i-\wurzel{3})+\bruch{1}{2}A(-\wurzel{3}-i)=0 [/mm]

A=1-B in (2) einsetzen ergibt nach einiger Rechnerei:

[mm] -\bruch{\wurzel{3}}{2}+(B-\bruch{1}{2})i=0 \Rightarrow Bi=\bruch{1}{2}(\wurzel{3}+i) \Rightarrow \red{B}=\bruch{1}{2}\bruch{\wurzel{3}+i}{i}=\red{\bruch{1}{2}-\bruch{\wurzel{3}}{2}i} [/mm]

Und damit [mm] \green{A=\bruch{1}{2}+\bruch{\wurzel{3}}{2}i} [/mm]

Folglich [mm] \bruch{H(z)}{z}=\bruch{z}{z^2-\wurzel{3}z+1}=\bruch{\green{\bruch{1}{2}+\bruch{\wurzel{3}}{2}i}}{z-\bruch{\wurzel{3}}{2}+\bruch{i}{2}}+\bruch{\red{\bruch{1}{2}-\bruch{\wurzel{3}}{2}i}}{z-\bruch{\wurzel{3}}{2}-\bruch{i}{2}} [/mm]


Puh, ich hoffe, ich hab mich da mal nicht verrechnet ;-)


Schönen Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "z-transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]