www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Partialbruchzerlegung
Partialbruchzerlegung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: partialbrüche
Status: (Frage) beantwortet Status 
Datum: 18:37 Mi 08.03.2006
Autor: zaaaq

Aufgabe
  [mm] \integral \bruch{2x²+41x-91}{(x-1)(x+3)(x-4)} [/mm] dx

Hallo Mathehelfer!

und zwar möchte ich dieses Integral lösen. Es wird mir schon in der Aufgabenstellung verraten das es mittels partialbruchzerlegug geschehen muss.

Ich kann mich zwar nur äußerst finster dran erinnern wie das geht, aber soweit ich weis muss ich doch zunächst die Nullstellen des Nenners ermitteln um die einzelnen Partialbrüche auszurechen. Also klammere ich im Nenner alles aus und erhalte : [mm] x^{3}-x²-12x+12 [/mm]

Nun die Nullstellen berechnen?

Irgendwie wirkt das auf mich falsch. Und ich weis auch nicht wie ich solch eine Nullstelle berechen.

Ich hoffe mir kann jemand helfen.


gruß zaaaq.




        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Mi 08.03.2006
Autor: cycilia

Die Nullstellen kannst du aus der gegebenen Form (x-1)(x+3)(x-4) ablesen, ohne das auszurechnen. Das sind 1, -3 und 4. Außerdem hast du nicht ausgeklammert, sondern ausmultipliziert ;)

Bei Partialbruchzerlegung zerlegst du, wie der Name sagt dein gegebenes Integral  [mm] \integral_{a}^{b}{\bruch{2x^2+41x-91}{(x-1)(x+3)(x-4)}dx}= \integral_{a}^{b}{\bruch{A}{(x-1)}dx}+\integral_{a}^{b}{\bruch{B}{(x+3)}dx}+\integral_{a}^{b}{\bruch{C}{(x-4)}dx} [/mm]

Durch Koeffizientenvergleich lassen sich A,B und C ausrechnen.

Bezug
                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:01 Mi 08.03.2006
Autor: cycilia

Ups, sorry, bin mit dem aufschreiben der Formeln etwas durcheinander geraten....

Und wollte noch eine Kleinigkeit zu den Nullstellen schreiben. Wenn du von einem Polynom die Nullstellen bestimmt hast, dann kannst du das Polynom in Linearfaktoren (x- [mm] \alpha)(x- \beta)... [/mm] zerlegen, wenn  [mm] \alpha [/mm] und  [mm] \beta [/mm] die Nullstellen sind. Umgekehrt lassen sich aus einer Zerlegung in Linearfaktoren die Nullstellen ablesen.

Das wird auch deutlich an der Tatsache, dass in   [mm] \IR [/mm] aus ab = 0 => a = 0 oder b = 0

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]