www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - Partialbruchzerlegung
Partialbruchzerlegung < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Variablen bestimmen
Status: (Frage) beantwortet Status 
Datum: 11:40 Mi 17.06.2015
Autor: fse

Aufgabe
Hallo zusammen!
Mein Zerlegungsansatz lautet:
[mm] \bruch{5s}{(s^2+4)*(s^2+2s+2)}=\bruch{As+B}{s^2+4}+\bruch{Cs+D}{s^2+2s+2} [/mm]
->
[mm] 5s=(As+B)*(s^2+2s+2)+(Cs+D)*((s^2+4) [/mm]

Wie bestimme ich jetzt am besten A, B, C, D:


ich muss ja für s Werte einsetzen aber wie weiß ich welche Werte ich nehme?
Oder wie gehe ich da am besten vor?
Muss ich einfach
[mm] s^2+2s+2=0 [/mm] setzen und [mm] s_{1/2} [/mm] berechen und das gleiche mit [mm] s^2+4=0 [/mm]  

Grüße fse

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Mi 17.06.2015
Autor: M.Rex

Hallo


> Hallo zusammen!
> Mein Zerlegungsansatz lautet:

>

> [mm]\bruch{5s}{(s^2+4)*(s^2+2s+2)}=\bruch{As+B}{s^2+4}+\bruch{Cs+D}{s^2+2s+2}[/mm]
> ->
> [mm]5s=(As+B)*(s^2+2s+2)+(Cs+D)*((s^2+4)[/mm]

>

> Wie bestimme ich jetzt am besten A, B, C, D:

>

> ich muss ja für s Werte einsetzen aber wie weiß ich
> welche Werte ich nehme?
> Oder wie gehe ich da am besten vor?
> Muss ich einfach
> [mm]s^2+2s+2=0[/mm] setzen und [mm]s_{1/2}[/mm] berechen und das gleiche mit
> [mm]s^2+4=0[/mm]

>

> Grüße fse

Du musst die rechte Seite ausmultiplizieren, und dann einen Koeffizientenvergleich mit der linken Seite machen, wobei fehlende Koeffizienten auf der Linken Seite dann Null sind.

[mm]5s=(As+B)\cdot(s^2+2s+2)+(Cs+D)\cdot(s^2+4)[/mm]
[mm]\Leftrightarrow5s=As^3+2As^2+2As+Bs^2+2Bs+2B+Cs^3+4Cs+Ds^2+4D[/mm]
[mm]\Leftrightarrow0s^3+0s^2+5s+0=(A+C)s^3+(2A+B+D)s^2+(2A+2B+4C)s+(2B+4D)[/mm]

Die Gleichung [mm]0s^3+0s^2+5s+0=(A+C)s^3+(2A+B+D)s^2+(2A+2B+4C)s+(2B+4D)[/mm] führt zu dem linearen Gleichungssytem

[mm] \begin{vmatrix}A+C=0\\2A+B+D=0\\2A+2B+4C=5\\2B+4D=0\end{vmatrix} [/mm]

Löse dieses LGS nun.

Marius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]