www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Partialbruchzerlegung
Partialbruchzerlegung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Ansatzbrüche
Status: (Frage) beantwortet Status 
Datum: 18:53 So 04.01.2015
Autor: fse

Aufgabe
Partialbruchzerlegung:
[mm] Xa=\bruch{1}{z-1}*\bruch{4z^2+26z}{z^2+4z-5} [/mm]



Hallo!
ich habe folgenden Bruch!

[mm] Xa=\bruch{1}{z-1}*\bruch{4z^2+26z}{z^2+4z-5} [/mm]

Somit habe ich aus dem Nenner eine doppelte Polstelle bei 1 und eine Polstelle bei -5 berechnet.


Als Lösungszwischenschritt habe ich
[mm] Xa=\bruch{A}{z-1}+\bruch{B}{(z-1)^2}+\bruch{C}{z+5} [/mm] gegeben

Verstehe jedoch nicht wie ich darauf komme!

Grüße fse


        
Bezug
Partialbruchzerlegung: Polynomdiv. &Partialbruchzerl.
Status: (Antwort) fertig Status 
Datum: 19:43 So 04.01.2015
Autor: VelvetPaws

Hallo fse!

Durch Polynomdivison erhältst Du folgendes:

[mm] $z^2+4z-5:z-1=z+5$ [/mm]

Dann folgt also

$ [mm] \bruch{1}{z-1}\cdot{}\bruch{4z^2+26z}{z^2+4z-5} [/mm] = [mm] \bruch{4z^2+26z}{(z-1)^2(z+5)}$ [/mm]

Mit dem Hauptsatz über Partialbruchzerlegung
(siehe []http://de.wikipedia.org/wiki/Partialbruchzerlegung#Der_Hauptsatz_.C3.BCber_Partialbruchzerlegung)
existiert die Darstellung die Du bereits angegeben hast.

Beantwortet das deine Frage?

Viele Grüße,
VelvetPaws

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 So 04.01.2015
Autor: fse

Danke, nun hab ich es glaube verstanden!
Der Ansatz für eine Doppelte Polstelle lautet

[mm] \bruch{A}{z-1}+\bruch{B}{(z-1)^2} [/mm]

mit der Polstelle bei -5 ergibt sich dann
insgesamt :
[mm] Xa=\bruch{A}{z-1}+\bruch{B}{(z-1)^2}+\bruch{C}{z+5} [/mm]

Viele Grüße
fse


Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 So 04.01.2015
Autor: Valerie20


> Danke, nun hab ich es glaube verstanden!
> Der Ansatz für eine Doppelte Polstelle lautet

>

> [mm]\bruch{A}{z-1}+\bruch{B}{(z-1)^2}[/mm]

>

> mit der Polstelle bei -5 ergibt sich dann
> insgesamt :
> [mm]Xa=\bruch{A}{z-1}+\bruch{B}{(z-1)^2}+\bruch{C}{z+5}[/mm]


[ok]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]