www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Partialbruchzerlegung
Partialbruchzerlegung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Sa 01.03.2014
Autor: Ice-Man

Hllo,

ich habe zu dem Thema mal bitte nur eine kurze Verständnisfrage,

Mit folgendem Term wurde eine "Partialbruchzerlegung" durchgeführt.

[mm] y=\bruch{0,005}{(8x+1)(12x+1)} [/mm]

Die stationäre Verstärkung ist mit x=0 zu berechnen und die beiden Pole sind [mm] x_{1}=-\bruch{1}{8} [/mm] und [mm] x_{2}=-\bruch{1}{12} [/mm]
Das Ergebnis ist gegeben mit,

[mm] k=\bruch{A}{x}+\bruch{B}{8x+1}+\bruch{B}{12x+1} [/mm]

Ich verstehe nur nicht warum "2 mal B formuliert werden muss", es handelt sich doch eigentlich nur um ein Polynom 1.Grades.

Kann mir das evtl. jemand bitte erklären?

Schon einmal vielen Dank für eure Hilfe.

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Sa 01.03.2014
Autor: leduart

Hallo
irgendwas ist an deiner Aufgabe komisch. die Partialbruchzerlegung von
[mm] y=\bruch{0,005}{(8x+1)(12x+1)} [/mm]
ist
[mm] y=\bruch{A}{8x+1}+\bruch{B}{12x+1} [/mm]
woher soll denn das 1/x stammen?
Was meinst du mit "stationärer Verstärlung??
was ist die eigentliche Aufgabe?
Gruß leduart

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Sa 01.03.2014
Autor: Ice-Man

Ich weis auch nicht wo, [mm] \bruch{1}{x}, [/mm] herkommt.
Es ist halt gefordert das von der Funktion y, die stationäre Verstärkung berechnet wird (x=0 setzen und ausrechnen).
Das wurde ja durchgeführt.
Und nun soll als eigentliches Ziel eine Sprungantwort berechnet werden.
Dafür benötige ich ja die einzelnen Koeffizienten.

Und das soll halt mit "Partialbruchzerlegung" ausgeführt werden.
Ich erhalte ja auch das gleiche Ergebnis wie du, jedoch ist es in der Lösung wie beschrieben, anders vorgegeben.
Und ich hatte halt gedacht das ich hier einmal frage ob ich da nochwas beachten muss bzw. ob ich etwas übersehen habe.


Jedenfalls danke für deine Hilfe.

Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Sa 01.03.2014
Autor: leduart

Hallo
so ohne die eigentliche Aufgabe, und die Definition von stationärer Verstärkung ist deine Partialbrichzerlegung sicher keine für dein y.
also nochmel um was geht es? dazu müsste man die eigentliche  Aufgane lennen.
Gruss leduart

Bezug
                                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:09 Sa 01.03.2014
Autor: Ice-Man

Um die Temperatur in einem Reaktor regeln zu können sollen aus den durch physikalische
Modellierung erhaltenenen Differentialgeichungen für die Heizung und die
Temperaturänderung im Reaktor jeweils die Übertragungsfunktionen bestimmt werden.
Gesucht wird dann die Übertragungsfunktionen GH(s) = Q(s)/U(s) (Heizung)
und GR(s) = [mm] \nu(s)/Q(s) [/mm] (Reaktor) bestimmt werden. Die Gesamtübertragungsfunktion
soll bestimmt und anschliessend analysiert werden.

Die Differentialgleichungen sind wie folgt gegeben:

[mm] 8*\bruch{\partial q(t)}{\partial t}+q(t)=0,025*u(t) [/mm]

und

[mm] 12*\bruch{\partial\nu(t)}{\partial(t)}+\nu(t)=0,2*q(t) [/mm]

Bestimmen Sie die Pole von G(s), die stationäre Verstärkung und berechnen Sie die Sprungantwort


Das wäre die komplette Aufgabenstellung.

Ich entschuldige mich jetzt schon einmal das ich die Variablen in meinem Post ein wenig anders genannt habe. (Das war aber nur in meinen Aufzeichnungen so damit ich das persönlich besser unterscheiden konnte.)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]