Parametrisierung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:10 Mi 26.08.2009 | Autor: | Surfer |
Hallo, ich verstehe solche Aufgaben bei denen man die Parameterdarstellung angeben soll nicht wirklich und bräuchte hierbei eine logische Erklärung!
Ich habe hier mal ein Beispiel und zwar heißt es: Gegeben Sei die Menge [mm] A:={(x,y)\in\IR^{2} : x^{2}+y^{2} <1 , x+y<1 } [/mm]
Bestimmen Sie eine Parametrisierung für den Rand von A !
Wie muss ich denn bei solchen Aufgaben vorgehen?
lg Surfer
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:01 Mi 26.08.2009 | Autor: | abakus |
> Hallo, ich verstehe solche Aufgaben bei denen man die
> Parameterdarstellung angeben soll nicht wirklich und
> bräuchte hierbei eine logische Erklärung!
> Ich habe hier mal ein Beispiel und zwar heißt es: Gegeben
> Sei die Menge [mm]A:={(x,y)\in\IR^{2} : x^{2}+y^{2} <1 , x+y<1 }[/mm]
>
> Bestimmen Sie eine Parametrisierung für den Rand von A !
>
> Wie muss ich denn bei solchen Aufgaben vorgehen?
>
> lg Surfer
Hallo,
bei einer Parametrisierung soll nicht wie bei einer Funktion y in Abhängigkeit von x angegeben werden, sondern sowohl x als auch y sollen in Abhängigkeit von einer veränderlichen Zahl (einem Parameter) t ausgedrückt werden.
Für jedes Punktepaar (x,y) auf dem Einheitskreis kann beispielsweise die Form
x=cos t
y=sin t
gewählt werden, wobei t von 0 bis [mm] 2\pi [/mm] läuft.
(Wenn irgendetwas "rundherum läuft" ist meist eine Parametrisierung über diesen Umlaufwinkel von 0 bis [mm] 2\pi [/mm] sinnvoll).
In deiner konkreten Aufgabe wird die Menge A im 2., 3. und 4. Quadranten von Einheitskreis begrenzt. Lediglich im 1. Quadranten ist es eine Begrenzungsstrecke (vom Punkt (0;1) zum Punkt (1;0). Für den Dreiviertelkreis kannst du
x=cos t
y=sin t
verwenden, wobei t diesmal nicht bei 0, ondern erst bei [mm] \pi [/mm] / 4 beginnt.
Nun musst du noch versuchen, mit einem von 0 bis [mm] \pi4 [/mm] laufenden Wert von t genau die Punktkoordinaten dieser Strecke zu beshreiben.
Wenn nicht diese Beshränkung wäre, wäre es einfach:
man setzt y=k mit 0 [mm] \le [/mm] k [mm] \le [/mm] 1 die y-Koordinate läuft ja von 0 bis 1),
und x=1-k (die x-Koordinate geht ja im gleichen Weg von 1 bis 0).
So hättest du die Strecke mit einem von 0 bis 1 laufenden Parameter k parametriesiert.
Da wir aber nicht zwei verschiedene, sondern nur einen Parameter nehmen sollen, musst du das von 0 bis 1 laufende k durch ein von 0 bis [mm] \pi/4 [/mm] laufendes t ausdrücken.
Das ist ganz einfach über [mm] k=t*4/\pi [/mm] möglich.
Eine mögliche Parametrisierung ist also
[mm] x(t)=\begin{cases}t*4/\pi, & \mbox{für } 0\le t \le \pi/4\\ sin t, & \mbox{für } \pi/4\< t\le 2\pi \end{cases}
[/mm]
und
[mm] y(t)=\begin{cases}... \end{cases}
[/mm]
Gruß Abakus
|
|
|
|