www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe-Software" - Parameterschätzung GDG
Parameterschätzung GDG < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Software"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterschätzung GDG: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:22 Di 03.02.2009
Autor: ullim

Hi,

ich habe eine gewöhnliche nichtlineare Differentialgleichung die von Parametern abhängt und zugehörige Messwerte der Lösung über einen bestimmten Zeitraum die fehlerbehaftet sind. Die DGL lautet allgemein

dx/dt = f(t,x;p) und [mm] x(t_0)=x_0 [/mm]  und p ist der Parametervektor.

Ich möchte nun anhand der Messwerte und der vorliegenden Differentialgleichung die unbekannten Parameter und den Anfangswert im Sinne einer Least Square Schätzung bestimmen.

Meine Frage ist nun, gibt es unter Matlab oder Mathcad Funktionen die das leisten bzw. kann man sich evtl. was aus dem Netz downloaden um das Problem zu lösen.

Für Tipps wäre ich sehr dankbar.

mfg Ullim



        
Bezug
Parameterschätzung GDG: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Do 05.02.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Software"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]