www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Parameterschätzung
Parameterschätzung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterschätzung: Probeklausuraufgabe 1
Status: (Frage) beantwortet Status 
Datum: 09:58 Sa 13.06.2009
Autor: tessanie

Aufgabe
Es seien [mm] X_{1}, [/mm] ... [mm] X_{n} [/mm] unabhängige Zufallsvariablen, je mit derselben Diche
[mm] f_{\theta} [/mm] (x) = [mm] \begin{cases} \bruch{\theta}{(x+\theta)^{2}} , & \mbox{für } x > 0 \\ 0, & \mbox{für } x \le 0 \end{cases} [/mm]
wobei [mm] \theta [/mm] > 0 ein unbekannter Parameter ist.

a) Welche Beziehung besteht zwischen [mm] \theta [/mm] und dem Median der Verteilung der [mm] X_{k}? [/mm]

b) Geben Sie einen Schätzwert für [mm] \theta [/mm] an, wenn im Fall n=9 die Werte
0.3, 0.8, 0.5, 2.3, 0.1, 9.5, 1.2, 0.6 und 10.1
für die Zufallsvariablen ermittelt werden.


Hallo,
die Stochastik-Klausur steht in 2 Wochen an und ich versuche gerade eine Übungsklausur durchzurechnen. Da ich dafür aber keine Lösungen habe und somit meine Ergebnisse nicht überprüfen kann, fänd ichs toll, wenn jemand von euch nochma drüber gucken könnte und mich auf Fehler aufmerksam machen könnte. Ich hab diese Frage in keinem anderen Forum gestellt. Vielen Dank für eine Antwort!

Also, zu der folgenden Aufgabe hab ich mir folgendes gedacht:
a) Man sollte den Quantilenschätzer dafür verwenden.
[mm] \epsilon_{\bruch{1}{2}} [/mm] = [mm] F_{\theta}(\epsilon_{\bruch{1}{2}}(F)) [/mm]

[mm] \epsilon_{\bruch{1}{2}} [/mm]  ist der Median also = [mm] \bruch{1}{2} [/mm]
[mm] \epsilon_{\bruch{1}{2}}(F) [/mm] ist der empirische Median von F

Weil ja nur die Dichte gegeben ist, wird zunächst die Verteilungsfunktion benötigt:
[mm] F_{\theta} [/mm] = [mm] \integral_{0}^{x}{f_{\theta}(y) dy} [/mm]
= [mm] \integral_{0}^{x}{\bruch{\theta}{(y+\theta)^{2}} dy} [/mm]
= [mm] \theta [/mm] * [mm] \integral_{0}^{x}{\bruch{1}{(y+\theta)^{2}} dy} [/mm]

jetzt mit Substitution:
s = y + [mm] \theta [/mm]
ds = dy

= [mm] \theta [/mm] * [mm] \integral_{0}^{x}{\bruch{1}{s^{2}} ds} [/mm]
= [mm] \theta [/mm] * [mm] \integral_{0}^{x}{s^{-2} ds} [/mm]
= [mm] \theta [/mm] * [mm] (-s^{-1}) |_{0}^{x} [/mm]

Rücksubstitution:

= [mm] \theta [/mm] * (-(y + [mm] \theta)^{-1}) |_{0}^{x} [/mm]
= - [mm] \bruch{\theta}{y + \theta} |_{0}^{x} [/mm]
= - [mm] \bruch{\theta}{x + \theta} [/mm] - (-1)
= 1 - [mm] \bruch{\theta}{x + \theta} [/mm]

Das wäre dann meine Verteilungsfunktion:  [mm] F_{\theta}= [/mm] 1 - [mm] \bruch{\theta}{x + \theta}. [/mm]

[mm] \epsilon_{\bruch{1}{2}} [/mm] = [mm] F_{\theta}(\epsilon_{\bruch{1}{2}}(F)) [/mm]
[mm] \bruch{1}{2} [/mm] = 1 - [mm] \bruch{\theta}{\epsilon_{\bruch{1}{2}}(F) + \theta} [/mm]
[mm] \bruch{1}{2} [/mm] = [mm] \bruch{\theta}{\epsilon_{\bruch{1}{2}}(F) + \theta} [/mm]
[mm] \bruch{1}{2} \epsilon_{\bruch{1}{2}}(F) [/mm] + [mm] \bruch{1}{2} \theta [/mm] = [mm] \theta [/mm]
[mm] \bruch{1}{2} \epsilon_{\bruch{1}{2}}(F) [/mm] = [mm] \bruch{1}{2} \theta [/mm]
[mm] \epsilon_{\bruch{1}{2}}(F) [/mm] = [mm] \theta [/mm]

Also, wär mein Zusammenhang zwischen [mm] \theta [/mm] und dem Median von der Verteilung, dass [mm] \theta [/mm] = dem Median der Verteilung ist.

b) Da der empirische Median der gegebenen Werte 0.8 ist, ist auch [mm] \theta [/mm] = 0.8 und die Verteilungsfunktion von X ist F(x)= 1 - [mm] \bruch{0.8}{(x+0.8)^2}. [/mm]

        
Bezug
Parameterschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Sa 13.06.2009
Autor: luis52

Moin teassanie,

das hast du sehr schoen geloest. [ok]
Von mir aus volle Punktzahl. :-)

vg Luis

Bezug
                
Bezug
Parameterschätzung: Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 So 14.06.2009
Autor: tessanie

Hallo Luis,
vielen Dank für deine schnelle Antwort!
Das motiviert zum Weiterrechnen! :-)
Tessanie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]