www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Parameterdarstellung
Parameterdarstellung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterdarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:39 So 18.02.2007
Autor: Clone

Aufgabe
Bestimme eine Parameterdarstellung der Ebene E*, die sowohl zu [mm] E_0: [/mm] 2x+7y+9z=121 als auch zu [mm] E_1: [/mm] 6x+7y-6z=-121 orthogonal ist und den Ursprung enthält.

Hi,
dazu müssen die Normalenvektoren [mm] \vec{n_0} [/mm] und [mm] $\vec{n_1}$ [/mm] orthogonal zum Normalenvektor [mm] $\vec{n*}$ [/mm] sein:
[mm] $\vec{n_0}\*\vec{n_1}=\vec{n\*}=\vektor{2 \\ 6 \\ 9}\times\vektor{6 \\ 7 \\ -6}=\vektor{-99 \\ 66 \\ -22}$. [/mm]
Ich nehme [mm] $\vec{n\*}=\vektor{9 \\ -6 \\ 2}$. [/mm]
So und nun weiß ich nicht weiter, denn ich muss ja die Ebene E* in Parameterform bringen. Wie kann man das am besten machen wenn die Ebene den Ursprung enthält?

        
Bezug
Parameterdarstellung: Tipp
Status: (Antwort) fertig Status 
Datum: 01:20 So 18.02.2007
Autor: Hiroschiwa


> Bestimme eine Parameterdarstellung der Ebene E*, die sowohl
> zu [mm]E_0:[/mm] 2x+7y+9z=121 als auch zu [mm]E_1:[/mm] 6x+7y-6z=-121
> orthogonal ist und den Ursprung enthält.
>  Hi,
>  dazu müssen die Normalenvektoren [mm]\vec{n_0}[/mm] und [mm]\vec{n_1}[/mm]
> orthogonal zum Normalenvektor [mm]\vec{n*}[/mm] sein:
>  [mm]\vec{n_0}\*\vec{n_1}=\vec{n\*}=\vektor{2 \\ 6 \\ 9}\times\vektor{6 \\ 7 \\ -6}=\vektor{-99 \\ 66 \\ -22}[/mm].
>  
> Ich nehme [mm]\vec{n\*}=\vektor{9 \\ -6 \\ 2}[/mm].

Ich habe das mal nicht nachgerechnet, wird schon schiefgehen ;)

>  So und nun weiß
> ich nicht weiter, denn ich muss ja die Ebene E* in
> Parameterform bringen. Wie kann man das am besten machen
> wenn die Ebene den Ursprung enthält?

[mm] \vektor{x \\ y \\ z}\*\vektor{9 \\ -6 \\ 2}=\vektor{0 \\ 0 \\ 0}\*\vektor{9 \\ -6 \\ 2} [/mm]

also 9x-6*y+2*z = 0  (wenn Ebenen im Ursprung liegt, dann ist die Ebenenkonstante immer 0)

jetzt 2 parameter einführen wie z.b y=t , z=s t,s e [mm] \IR [/mm]
nach x umstellen
den vektor [mm] \vektor{x \\ y \\ z} [/mm] = [mm] \vektor{... \\ t \\ s} [/mm] austellen, in Summe aus Vektoren aufdröseln und parameter  ausklammern, fertig,


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]