www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Parameterbestimmung
Parameterbestimmung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:24 Fr 14.03.2014
Autor: hotrod91

Aufgabe
Geben Sie t ∈ R an, s.d. die Geraden 7 x − 4 y = 3 bzw. x + t y = 4
a) parallel sind.
b) orthogonal sind.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mein Problem liegt irgendwie darin, dass die Gleichungen in Koordinatenform vorliegen.
Ich weiß, dass zwei Geraden parallel sind wenn das Kreuzprodukt ihrer Richtungsvektoren = Nullvektor
Nun bin ich mir relativ unsicher wie ich die Richtungsvektoren korrekt ablese.
Weiterhin hab ich keine Ahnung wie ich herausfinde, dass 2 geraden Orthogonal zueinander sind.



        
Bezug
Parameterbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 Fr 14.03.2014
Autor: reverend

Hallo hotrod91, [willkommenmr]

> Geben Sie t ∈ R an, s.d. die Geraden 7 x − 4 y = 3 bzw.
> x + t y = 4
> a) parallel sind.
>  b) orthogonal sind.
>  
> Mein Problem liegt irgendwie darin, dass die Gleichungen in
> Koordinatenform vorliegen.

Dann form sie einfach um:

[mm] \vektor{-7\\4}*\vektor{x\\y}=3 [/mm] und [mm] \vektor{1\\t}*\vektor{x\\y}=4 [/mm]

Hieraus kannst Du Normalenvektoren ablesen, für die bzgl. Parallelität und Orthogonalität das gleiche gilt wie für die Richtungsvektoren.

Wenn Du das nicht überblickst, kannst Du aber auch leicht zwei Richtungsvektoren gewinnen, z.B. [mm] \vektor{4\\7} [/mm] und [mm] \vektor{t\\-1}. [/mm]

> Ich weiß, dass zwei Geraden parallel sind wenn das
> Kreuzprodukt ihrer Richtungsvektoren = Nullvektor

[ok]

> Nun bin ich mir relativ unsicher wie ich die
> Richtungsvektoren korrekt ablese.

Siehe oben.

>  Weiterhin hab ich keine Ahnung wie ich herausfinde, dass 2
> geraden Orthogonal zueinander sind.

Dann wird das Skalarprodukt Null.

Grüße
reverend

Bezug
                
Bezug
Parameterbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Fr 14.03.2014
Autor: hotrod91

Vielen Dank für die schnelle Hilfe!
Mir ist nun bewusst wie ich auf die Richtungsvektoren komme.
Allerdings fällt mir gerade auf, dass das Kreuzprodukt im R2 nicht definiert ist?!

Für b) ist mir nun ebenfalls klar wie ich drauf komme.
[mm] \vektor{4 \\ 7} [/mm] * [mm] \vektor{t \\ -1} [/mm] = 0

4t-7=0

[mm] t=\bruch{7}{4} [/mm]

ist dies korrekt?

Bezug
                        
Bezug
Parameterbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Fr 14.03.2014
Autor: fred97


> Vielen Dank für die schnelle Hilfe!
>  Mir ist nun bewusst wie ich auf die Richtungsvektoren
> komme.
> Allerdings fällt mir gerade auf, dass das Kreuzprodukt im
> R2 nicht definiert ist?!
>  
> Für b) ist mir nun ebenfalls klar wie ich drauf komme.
>  [mm]\vektor{4 \\ 7}[/mm] * [mm]\vektor{t \\ -1}[/mm] = 0
>  
> 4t-7=0
>  
> [mm]t=\bruch{7}{4}[/mm]
>  
> ist dies korrekt?

ja

FRED


Bezug
        
Bezug
Parameterbestimmung: ganz klassische Lösung
Status: (Antwort) fertig Status 
Datum: 10:55 Fr 14.03.2014
Autor: Steffi21

Hallo, du bekommst die Geraden:

(1) [mm] y=\bruch{7}{4}x-\bruch{4}{3} [/mm]

(2) [mm] y=-\bruch{1}{t}x+\bruch{4}{t} [/mm]
    [mm] (t\not=0) [/mm]

parallel:
[mm] \bruch{7}{4}=-\bruch{1}{t} [/mm]

orthogonal:
[mm] \bruch{7}{4}*(-\bruch{1}{t})=-1 [/mm]

Steffi





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]