www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Parameteraufgabe
Parameteraufgabe < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameteraufgabe: Lösung ist unverständlich
Status: (Frage) beantwortet Status 
Datum: 16:49 Mi 14.04.2010
Autor: sarasaadi

Aufgabe
f(x) = -0,5x³ +6,125x

Der Flächeninhalt A2 der Fläche, die zwischen dem Graphen von f und der x-Achse im
Intervall [ -a ; a ] eingeschlossen ist, soll 30 FE betragen. Berechnen Sie a.

Hallo,
ich habe ein Problem mit der Lösung dieser Aufgabe.
Mir ist der Rechenweg bekannt und auch die Lösungsformel.
Leider empfinde ich diesen Weg als unverständlich.
Ich hoffe/bitte, dass vielleicht jmd. mir den Lösungsweg besser oder genauer erläutern kann.
Es geht hier ausschließlich um die Bestimmung des Flächeninhaltes.

Lösung:

Ansatz für den Flächeninhalt

A2= [mm] 2*\integral_{0}^{a}{f(x) dx}= [/mm] 2*(F(a)−F(0)) = 30 ⇔
F(a)+15=0 [mm] ⇔−0,125a^4+3,0625a^2−15=0 [/mm]

Link (Aufgabe 4.3)
http://www.joerg-lehnen.de/Mathematik/FOS2008Vorschlag1.pdf

Vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Parameteraufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Mi 14.04.2010
Autor: Fawkes

Hi,
an sich ist die Lösung dieser Aufgabe nicht allzu schwer. Was man in der Aufgabe sucht, ist ein Intervall von -a bis a sodass der Flächeninhalt 30 beträgt. Im Gegensatz zu den meisten anderen Aufgaben zu diesem Thema geht es hier also nicht darum die Nullstellen der Funktion f zu berechnen und dann die Fläche, die f mit der x-Achse einschließt zu berechnen.
Betrachtet man dann einmal die Funktion, so sieht man, dass diese punktsymmetrisch zu Ursprung ist. Also muss man nur den positiven Flächeninhalt auf der rechten Seite der x-Achse berechnen und diesen dann verdoppeln, da er in gleicher Form auch auf der linken Seite vorkommt. Deshalb werden die Grenzen von 0 bis a gelegt. Man könnte auch das Intervall von -a bis a berechnen, und kommt am Ende auf das selbe Ergebnis:
[mm] |\integral_{-a}^{0}{f(x) dx}|+\integral_{0}^{a}{f(x) dx}=|F(0)-F(-a)|+F(a)=2*F(a)=30 [/mm]
[mm] \gdw [/mm] F(a)=15 [mm] \gdw [/mm] F(a)-15=0 das muss du wie schon in der Lösung geschehen nun noch ausrechnen und schon hast du dein a bzw. -a raus.
Gruß Fawkes

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]