www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Parallelprojektions-Richtung
Parallelprojektions-Richtung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parallelprojektions-Richtung: Frage zur Projektionsrichtung
Status: (Frage) beantwortet Status 
Datum: 23:11 Sa 02.07.2005
Autor: drzero

Hallo, Ihr Matheversteher!

Am Montag ist meine dicke Klausur *zitter*...

Folgende Aufgabe:
"
Bei einer Parallelprojektion wird das Achsenkreuz  [mm] \pmat{ \vec{x} \\ \vec{y} \\ \vec{z} } [/mm] auf die punkte
[mm] \pmat{ -(1/2) \\ -(1/2) } [/mm] und [mm] \pmat{ 1/2 \\ -(1/2) } [/mm] und [mm] \pmat{ 0 \\ 1 } [/mm] abgebildet.

a) Zeichnen Sie das Achsenkreuz und geben Sie die Abbildungsmatrix M an.
b) Bestimmen Sie die Projektionsrichtung  [mm] \vec{p} [/mm]
"

Soweit bin ich:

Da ich aus dem dreidimensionalen Raum in den zweidmensionalen Raum projeziere, muss meine Matrix eine 2x3 Matrix sein.

a) gemalt bekomme ich das ohne Probleme.
     Die Matrix M sieht bei mir so aus:

M=  [mm] \pmat{ -(1/2) & (1/2) & 0 \\ -(1/2) & -(1/2) & 1} [/mm]

das dürfte auch noch stimmen.

JETZT ABER:
zur Projektionsrichtungsbestimmung habe ich folgende Formel gefunden:

[mm] \pmat{ 0 & } [/mm] = M  [mm] \* \vec{p} [/mm] =   [mm] \pmat{ n & n & n \\ n & n & n \\ n & n & n } \pmat{ \p_{1} & \p_{2} & \p_{3} } [/mm]

Und nun komme ich nicht mehr weiter... Ihr?

Vielen Dank schonmal, auch für die bisherige Hilfe ;-)

MFG, die "Mathe-Eintagsfliege" drzero

PS: Dieses hier habe ich nirgendwo sonst...


        
Bezug
Parallelprojektions-Richtung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:32 So 03.07.2005
Autor: DaMenge

Hallo,

ich weiß zwar nicht genau, was du da alles vorher machst, aber es sieht schonmal sehr gut nach einer linearen Abbildung aus.

wenn du jetzt :

>  
> [mm]\pmat{ 0 & }[/mm] = M  [mm]\* \vec{p}[/mm] =   [mm]\pmat{ n & n & n \\ n & n & n \\ n & n & n } \pmat{ p_{1} & p_{2} & p_{3} }[/mm]

meinst : $ [mm] 0=M*\vec{p} [/mm] = [mm] \pmat{ -\bruch{1}{2} & \bruch{1}{2} & 0 \\ -\bruch{1}{2} & -\bruch{1}{2} & 1 } [/mm] * [mm] \vektor{ p_1 \\ p_2 \\ p_3 } [/mm] $

dann ist die Lösung zwar nicht eindeutig, aber alle Lösungsvektoren liegen auf einer Geraden,
wenn man die zweite Zeile der Matrix plus erste Zeile rechnet kommt raus:
$ [mm] \pmat{ -\bruch{1}{2} & \bruch{1}{2} & 0 \\ -1 & 0 & 1 } [/mm] * [mm] \vektor{ p_1 \\ p_2 \\ p_3 }=\vektor{0\\0\\0} [/mm] $

also gilt nun : [mm] p_1 [/mm] = [mm] p_2 [/mm] und [mm] p_1 [/mm] = [mm] P_3 [/mm]
setze [mm] p_1 [/mm] = t (beliebig) , dann ist $ [mm] \{ \vektor{t\\t\\t} \} [/mm] = [mm] \{ t*\vektor{1\\1\\1} \} [/mm] $ die Lösungsmenge.

Aber irgendwie bezweifle ich, dass der Kern die Projektionsrichtung bestimmen soll, also habe ich dich entweder falsch verstanden oder du die Formel, die du gefunden hast.

Mal schauen, was andere davon halten.
viele Grüße
DaMenge


Bezug
                
Bezug
Parallelprojektions-Richtung: Meine Meinung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:26 So 03.07.2005
Autor: Paulus

Hallo miteinander

DaMenges Überlegungen sind goldrichtig!

Wenn man nämlich eine Gerade durch den Ursprung zeichnet, die genau in Projektionsrichtung zeigt, dann wird die ganze Gerade auf den Ursprung projiziert, hat also den Wert [mm] $\vec{0}$ [/mm] . Bei diesem schönen Wetter kann man das ja mit einem Bleistift versuchen, dessen Spitze in Richung Sonne zeigt. Es ist klar, dass das Bleistift (also der Richtungsvektor) nur bis auf einen konstanten Faktor bestimmt ist.

Mit vielen Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]