Parabeln.Quadratische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo,
ich komm in zwei aufgaben nicht weiter, während bei der ersten Aufg. ich komplett nicht weiter weiß, ist das Ergebnis bei der zweiten Aufgabe so unwahrscheinlich, es scheint mir so jedenfalls.
Aufg. 1)
y²= ax y= mx + b
(mx + b)² = ax
<=> m² x² + 2mxb + b² = ax
<=> m² x² + 2mbx - ax + b² = 0 / : m²
<=> x² + (2b : m )x - (a : m²)x + b² : m²
so wie mache ich jetzt weiter?
ich soll die pq Formel anwenden, nur leider weiß ich da nicht richtig weiter...
Aufg.2
Bestimme rechnerisch die geimsamen Punkte von Parabel und Gerade.
b) y2 = 0,18
y= 0,3x - 1,2
0,18x = ( 0,3x - 1,2)²
alles umgewandelt ergibt das nach ausrechnen der bin. Formel ...
0 = x² + 8x - 16
x1/2 = 4 +- [mm] \wurzel{16 + 16}
[/mm]
x 1/2 = 4 +- [mm] \wurzel{32}
[/mm]
aus Wurzel 32 kommt dan eine lange Kommerzahl raus....
und das passt dann natürlich nicht so toll...
also x1=9,656854249
und x2= -1,656854249
für y eingesetzt:
Endergebnis:
P1 ( 9,65.... / 1,697056275) und bei p2 kommt auch so ein komisches Ergebnis raus.
also wie weiter. danke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:49 Do 20.10.2005 | Autor: | ribu |
hi nightwalker...
bei aufgabe 1) sieht das soweit ganz gut aus.... musst nach deinem letzten schritt nur noch x im mittleren glied ausklammern, und schon kannste die p-q-formel anwenden...
[mm] 0=x^{2}+ \bruch{2b}{m}*x- \bruch{a}{m^{2}}*x+ \bruch{b^{2}}{m^{2}} [/mm] daraus wird
[mm] 0=x^{2}+ (\bruch{2b}{m}-\bruch{a}{m^{2}})*x+\bruch{b^{2}}{m^{2}}
[/mm]
nun einfach die pq-formel anwenden...
[mm] x_{1/2}=- \bruch{\bruch{2b}{m}-\bruch{a}{m^{2}}}{2} \pm \wurzel{{(\bruch{\bruch{2b}{m}-\bruch{a}{m^{2}}}{2}})^{2}-\bruch{b^{2}}{m^{2}}}
[/mm]
nun kannste die werte aus aufgabe 2) einfach in die in 1) erhaltene formel einsetzen:
m=0,3
b=1,2
a=0,18
allerdings erhalte ich dann unter der wurzel eine negative zahl, somit würde ich sagen das es keine schnittpunkte der beiden funktionen gibt versuch es doch selber auch nochmal... evt bekommste ja was anderes raus...
mfg ribu
|
|
|
|
|
danke für die schnelle Hilfe,
...
ich habe das nicht so ganz verstanden mit dem einsetzen zumal ja auch Aufg. 1 ja stand: y = mx + b und bei Aufg. 2 steht ja y= 0,3x - 1,2
geht das dann auch noch?
Außerdem haben wir das im Unterricht anders gelernt, nämlich wir habens zuerst gleichgsetzt und dann die pq Formel angewandt...
Also wie löse ich Aufg. 2 mit der pq Formel und Gleichsetzen ???
danke...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:23 Do 20.10.2005 | Autor: | leduart |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo nightwalker
Bei Aufgabe 2 hast du dich verrechnet!
$0,18x=(0,3x-1,2)^{2}$
$0,18x=0,3^{2}*{x-4)^{2}$
$2x=(x-4)^{2}$
$x^{2}-10x+16=0$
Jetzt kannst dus wohl!
Wenn du die erste Aufgabe richtig hast, hast du die ja für beliebige a,m,b gelöst. also auch
für a=0,18, m=0,3; b=-1,2.
Wenn du die Werte in dein Ergebnis für 1 einsetzest sollte dasselbe Ergebnis rauskommen, wie wenn du direkt rechnest. Jetzt kapiert?
Gruss leduart
|
|
|
|