www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Parabel und Gerade
Parabel und Gerade < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parabel und Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:06 So 10.06.2007
Autor: sirikit

Aufgabe
Gegeben ist die Parabel
par: [mm] x^{2}= [/mm] 4y
und die Gerade
g: x-y=-3 , die die Parabel in zwei Punkten schneidet.
Berechne die Fläche des Dreiecks, das aus der Parabelsehne und den Tangenten in den Schnittpunkten gebildet wird.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also,
mit meinen eigenen Lösungsansätzen ist es leider nicht besonders weit her.
Ich bin einmal so weit, dass ich die Gerade mit der Parabel schneiden muss und dann die Punkte S1 und S2 bekomme, die gleichzeitig die Berührpunkte der Tangenten sind.

Wie stelle ich jetzt aber die Tangentengleichungen auf?

Und wie komme ich zur Gleichung der Parabelsehne?

Bin für jede Hilfe dankbar!

lG

        
Bezug
Parabel und Gerade: Hinweise
Status: (Antwort) fertig Status 
Datum: 11:15 So 10.06.2007
Autor: Loddar

Hallo sirikit,

[willkommenmr] !!


Die Geradengleichung der Prabelsehne erhältst Du über die beiden Schnittpunkte [mm] $S_1 [/mm] \ [mm] \left( \ x_1 \ ; \ y_1 \ \right)$ [/mm] und [mm] $S_2 [/mm] \ [mm] \left( \ x_2 \ ; \ y_2 \ \right)$ [/mm] und die Zwei-Punkte-Form von Geraden:

[mm] $\bruch{y-y_1}{x-x_1} [/mm] \ = \ [mm] \bruch{y_2-y_1}{x_2-x_1}$ [/mm]


Für die beiden Tangentengleichungen benötigst Du zunächts die beiden steigungen an der Kurve $y \ = \ [mm] \bruch{x^2}{4}$ [/mm] mit Hilfe der Ableitung:

[mm] $m_1 [/mm] \ = \ [mm] f'(x_1)$ [/mm] bzw. [mm] $m_2 [/mm] \ = \ [mm] f'(x_2)$ [/mm]


Und dann setzen wir das ein in die Punkt-Steigungs-Form:

[mm] $m_1 [/mm] \ = \ [mm] \bruch{y-y_1}{x-x_1}$ [/mm]   bzw.   [mm] $m_2 [/mm] \ = \ [mm] \bruch{y-y_2}{x-x_2}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]