www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Parabel - Tangente durch 0/0
Parabel - Tangente durch 0/0 < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parabel - Tangente durch 0/0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Mo 19.01.2009
Autor: Ph0eNiX

Aufgabe
An die Parabel [mm] y=x^2+8x+9 [/mm] werden alle Tangenten gelegt, die durch den Ursprung laufen. Berechnen Sie die Gleichung dieser Tangenten.

Hallo zusammen
Bei dieser Aufgabe schaffe ich den Anfang nicht. Man muss wol den Ursprung (0/0) irgendwie mit [mm] y=x^2+8x+9 [/mm] gleichsetzen, nur frage ich mich, wie das gehen soll..

Danke für eure Hilfe!

cu Ph0eNiX


PS: Kennt jemand ne Website mit solchen oder ähnlichen Aufgaben inkl. Lösungen & Erklärungen wie man solche Aufgaben angehen muss? (Exp. Gleichung, Tangente, lin. Gleichung zusammen kombiniert)

        
Bezug
Parabel - Tangente durch 0/0: Bestimmungsgleichungen
Status: (Antwort) fertig Status 
Datum: 21:46 Mo 19.01.2009
Autor: Loddar

Hallo Ph0enix!


Eine Gerade durch den Ursprung hat die Form $g(x) \ = \ m*x$ .

Damit der Punkt $B \ [mm] \left( \ b \ | \ f(b) \ \right)$ [/mm] ein Berührpunkt ist, muss gelten:
$$f(b) \ = \ g(b)$$
$$f'(b) \ = \ g'(b)$$
Mit diesen beiden Gleichungen kannst Du nun $b_$ ermitteln.


Gruß
Loddar


Bezug
        
Bezug
Parabel - Tangente durch 0/0: Materialien
Status: (Antwort) fertig Status 
Datum: 09:15 Di 20.01.2009
Autor: informix

Hallo Ph0eNiX,

> An die Parabel [mm]y=x^2+8x+9[/mm] werden alle Tangenten gelegt, die
> durch den Ursprung laufen. Berechnen Sie die Gleichung
> dieser Tangenten.
>  Hallo zusammen
>  Bei dieser Aufgabe schaffe ich den Anfang nicht. Man muss
> wol den Ursprung (0/0) irgendwie mit [mm]y=x^2+8x+9[/mm]
> gleichsetzen, nur frage ich mich, wie das gehen soll..
>  
> Danke für eure Hilfe!
>  
> cu Ph0eNiX
>  
>
> PS: Kennt jemand ne Website mit solchen oder ähnlichen
> Aufgaben inkl. Lösungen & Erklärungen wie man solche
> Aufgaben angehen muss? (Exp. Gleichung, Tangente, lin.
> Gleichung zusammen kombiniert)

Eigentlich müsstest du dich nur duch den Matheraum klicken, um eine Vielzahl ähnlicher Aufgaben mit Tipps und Lösungen zu finden...
Wenn du ein Forum aufrufst, gibt es häufig im Kopf des Forums einen Link Materialien, z.B. Materialien zu ganz-rat. Funktionen.

Auch dort kannst du weitere Aufgaben und Hilfen finden.

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]