www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - PBZ
PBZ < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PBZ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Di 29.06.2010
Autor: egal

Aufgabe
[mm] \bruch{1}{(x^2+4)*(x+4x)}=\bruch{Ax+B}{x^2+4}+\bruch{C}{x+4} [/mm]

Hi,

ich will die Aufgabe mit der Zuhaltemethode lösen:

[mm] C=\bruch{1}{(x^2+4)} [/mm] mit x=-4 ergibt das [mm] C=\bruch{1}{20} [/mm]

Nun:

[mm] \bruch{1}{(x^2+4)*(x+4x)}-\bruch{1}{20x+80}=\bruch{Ax+B}{x^2+4} [/mm]

Auf einen Nenner bringen:

[mm] =\bruch{20x+80-x^3-4x^2-4x-16}{(x^2+4)(x+4)(20x+80)}=\bruch{Ax+B}{x^2+4} [/mm]

[mm] =\bruch{-x^3-4x^2+16x+64}{(x^2+4)(x+4)(20x+80)}=\bruch{Ax+B}{x^2+4} [/mm]

Nun Polynomdivision:

[mm] (-x^3-4x^2+16x+64):(x+4)=-x^2+16 [/mm]

was soll jetzt geschehen?



        
Bezug
PBZ: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 Di 29.06.2010
Autor: MathePower

Hallo egal,

>
> [mm]\bruch{1}{(x^2+4)*(x+4x)}=\bruch{Ax+B}{x^2+4}+\bruch{C}{x+4}[/mm]


Der Ansatz ist nicht ganz richtig.

[mm]\bruch{1}{(x^2+4)*(x^{2}+4x)}=\bruch{Ax+B}{x^2+4}+\bruch{C}{x+4}\red{+\bruch{D}{x}}[/mm]


>  Hi,
>  
> ich will die Aufgabe mit der Zuhaltemethode lösen:
>  
> [mm]C=\bruch{1}{(x^2+4)}[/mm] mit x=-4 ergibt das [mm]C=\bruch{1}{20}[/mm]
>  
> Nun:
>  
> [mm]\bruch{1}{(x^2+4)*(x+4x)}-\bruch{1}{20x+80}=\bruch{Ax+B}{x^2+4}[/mm]
>  
> Auf einen Nenner bringen:
>  
> [mm]=\bruch{20x+80-x^3-4x^2-4x-16}{(x^2+4)(x+4)(20x+80)}=\bruch{Ax+B}{x^2+4}[/mm]
>  
> [mm]=\bruch{-x^3-4x^2+16x+64}{(x^2+4)(x+4)(20x+80)}=\bruch{Ax+B}{x^2+4}[/mm]
>  
> Nun Polynomdivision:
>  
> [mm](-x^3-4x^2+16x+64):(x+4)=-x^2+16[/mm]
>  
> was soll jetzt geschehen?
>  


Bei der Zuhaltemethode multiplizierst Du die Gleichung  

[mm]\bruch{1}{(x^2+4)*(x^{2}+4x)}=\bruch{Ax+B}{x^2+4}+\bruch{C}{x+4}+\bruch{D}{x}[/mm]

mit dem Hauptnenner ( hier: [mm]x*\left(x+4\right)*\left(x^{2}+4\right)[/mm] ) durch.

Und betrachtest vom entstehenden Resultat nur jeweils die Zähler.

In die Zähler setzt Du nun nacheinander die reellen Nullstellen des Nenners ein.


Gruss
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]