www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Ortsvektor
Ortsvektor < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ortsvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 So 09.01.2011
Autor: Kuriger

Hallo

Irgendwie reicht mein latein hier nicht aus

Zur Zeit t = 0 befindet sich ein Partikel, welches sich auf einer Gerade bewegt beim Punkt (1,2) Das Partikel geht auf den Punkt (4,1) zu. Das Partikel hat beim Punkt (1,2) die Schnelligkeit 2 und die konstante Beschleunigung (3,-1). gesucht ist die Gleichung für den Ortsvektor r(t)
Dass der ortsvektor zum zeitpunkt Null am Ort (1,2) ist, muss die Form irgendwie so aussehen

r(t) = [mm] \vektor{(.....)t + 1 \\ (.....)t + 2} [/mm]

Aber irgendwie kann ich die im Text gemachten Angaben nicht umsetzen

gruss Kuriger

        
Bezug
Ortsvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 So 09.01.2011
Autor: abakus


> Hallo
>  
> Irgendwie reicht mein latein hier nicht aus
>  
> Zur Zeit t = 0 befindet sich ein Partikel, welches sich auf
> einer Gerade bewegt beim Punkt (1,2) Das Partikel geht auf
> den Punkt (4,1) zu. Das Partikel hat beim Punkt (1,2) die
> Schnelligkeit 2 und die konstante Beschleunigung (3,-1).
> gesucht ist die Gleichung für den Ortsvektor r(t)
>  Dass der ortsvektor zum zeitpunkt Null am Ort (1,2) ist,
> muss die Form irgendwie so aussehen
>  
> r(t) = [mm]\vektor{(.....)t + 1 \\ (.....)t + 2}[/mm]
>  
> Aber irgendwie kann ich die im Text gemachten Angaben nicht
> umsetzen
>  
> gruss Kuriger

Hallo,
kleiner Exkurs in die Physik:
Weg-Zeit-Gesetz der gleichmäßig beschleunigten Bewegung aus der Ruhe heraus:
[mm] s=\bruch{a}{2}t^2 [/mm]
Aus der Anfangsgeschwindigkeit [mm] v_0 [/mm] heraus:
[mm] s=\bruch{a}{2}t^2 +v_0*t [/mm]

Und wenn zu Beginn der Zeitmessung bereits ein Anfangsweg [mm] s_0 [/mm] zurückgelegt war (die Ortsmessung also nicht am "Kilometerstein Null" beginnt):
[mm] s=\bruch{a}{2}t^2 +v_0*t+s_0. [/mm]
Das gilt nun sowohl für die x- als auch für die y-Koordinate:
[mm] x=\bruch{a_x}{2}t^2 +v_0_x*t+s_0_x [/mm] ,
für y entsprechend.

Dass [mm] s_0_x=1 [/mm] und [mm] s_0_y=2 [/mm] gilt, hast du schon in deinem eigenen Ansatz geschrieben.
Zur Anfangsgeschwindigkeit von 2 Einheiten: Der Geschwindigkeitsvektor hat die Richtung [mm] \vektor{3 \\ -1}. [/mm] Der Betrag davon ist [mm] \wurzel{10}. [/mm] Das musst du proportional runterrechnen auf den Betrag 2:
[mm] v_x_0=\bruch{2}{ \wurzel{10}}*3, [/mm] und
[mm] v_y_0=\bruch{2}{ \wurzel{10}}*(-1) [/mm]
Auch die Beschleunigungskomponenten [mm] a_x [/mm] und [mm] a_y [/mm] müssen entsprechend im Verhältnis 3:(-1) stehen.
Gruß Abakus

Bezug
        
Bezug
Ortsvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 So 09.01.2011
Autor: fencheltee


> Hallo
>  
> Irgendwie reicht mein latein hier nicht aus
>  
> Zur Zeit t = 0 befindet sich ein Partikel, welches sich auf
> einer Gerade bewegt beim Punkt (1,2) Das Partikel geht auf
> den Punkt (4,1) zu. Das Partikel hat beim Punkt (1,2) die
> Schnelligkeit 2 und die konstante Beschleunigung (3,-1).
> gesucht ist die Gleichung für den Ortsvektor r(t)
>  Dass der ortsvektor zum zeitpunkt Null am Ort (1,2) ist,
> muss die Form irgendwie so aussehen
>  
> r(t) = [mm]\vektor{(.....)t + 1 \\ (.....)t + 2}[/mm]
>  
> Aber irgendwie kann ich die im Text gemachten Angaben nicht
> umsetzen
>  
> gruss Kuriger

hallo,
war das hier nich lang und breit genug?
https://matheraum.de/read?t=722798
gruß tee


Bezug
                
Bezug
Ortsvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Mi 12.01.2011
Autor: Kuriger

Hallo

Ich muss trotzdem nochmals micha uf diese AUfgabe beziehen


Gegeben habe ich


r(0) = [mm] \vektor{1 \\ 2} [/mm]
v(0) = [mm] k*(\vektor{3\\ -1}) [/mm]
lv(0)l = 2
a(t) = [mm] \vektor{3 \\ -1} [/mm] Gilt diese beschleunigung nicht nur für a(0)?


Nun kann ich k bestimmen, damit der Betrag 2 gibt. Wie bereits berechnet ergibt dies k = [mm] \bruch{2}{\wurzel{10}} [/mm]


Nun habt ihr mir gesagt


v(t) = v(0) + [mm] \integral [/mm] a(t) dt = [mm] \bruch{2}{\wurzel{10}} [/mm] * [mm] \vektor{3 \\ -1} [/mm] + [mm] \vektor{3t \\ -t} [/mm]

Nun

r(t) = r(0) + [mm] \integral [/mm] v(t) dt = [mm] \vektor{1 \\ 2} [/mm] + [mm] \bruch{2}{\wurzel{10}} [/mm] * [mm] \vektor{3t \\ -1t} [/mm] + [mm] \vektor{1.5t^2 \\ \bruch{1}{2}t^2} [/mm]

Irgendwas stimmt da nicht

In der Lösung steht:

x(t) = 3/2 [mm] t^2 [/mm] + [mm] bruch{6}{\wurzel{10}} [/mm] t + 1
y(t) = -1/2 [mm] t^2 [/mm] - [mm] bruch{2}{\wurzel{10}} [/mm] t + 2

Danke, Gruss Kuriger

Bezug
                        
Bezug
Ortsvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Mi 12.01.2011
Autor: fencheltee


> Hallo
>  
> Ich muss trotzdem nochmals micha uf diese AUfgabe beziehen
>  
>
> Gegeben habe ich
>  
>
> r(0) = [mm]\vektor{1 \\ 2}[/mm]
>  v(0) = [mm]k*(\vektor{3\\ -1})[/mm]
>  lv(0)l
> = 2
>  a(t) = [mm]\vektor{3 \\ -1}[/mm] Gilt diese beschleunigung nicht
> nur für a(0)?
>  

die beschleunigung ist konstant, wie in der aufgabe steht.

>
> Nun kann ich k bestimmen, damit der Betrag 2 gibt. Wie
> bereits berechnet ergibt dies k = [mm]\bruch{2}{\wurzel{10}}[/mm]
>  
>
> Nun habt ihr mir gesagt
>  
>
> v(t) = v(0) + [mm]\integral[/mm] a(t) dt = [mm]\bruch{2}{\wurzel{10}}[/mm] *
> [mm]\vektor{3 \\ -1}[/mm] + [mm]\vektor{3t \\ -t}[/mm]
>  
> Nun
>  
> r(t) = r(0) + [mm]\integral[/mm] v(t) dt = [mm]\vektor{1 \\ 2}[/mm] +
> [mm]\bruch{2}{\wurzel{10}}[/mm] * [mm]\vektor{3t \\ -1t}[/mm] +
> [mm]\vektor{1.5t^2 \\ \bruch{1}{2}t^2}[/mm]
>  
> Irgendwas stimmt da nicht
>  
> In der Lösung steht:

integrier mal die y komponente von r(t) richtig, dann erhälst du das gleiche ergebnis

>  
> x(t) = 3/2 [mm]t^2[/mm] + [mm]bruch{6}{\wurzel{10}}[/mm] t + 1
>  y(t) = -1/2 [mm]t^2[/mm] - [mm]bruch{2}{\wurzel{10}}[/mm] t + 2
>  
> Danke, Gruss Kuriger


gruß tee

Bezug
                        
Bezug
Ortsvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Do 13.01.2011
Autor: MathePower

Hallo Kuriger,

> Hallo
>  
> Ich muss trotzdem nochmals micha uf diese AUfgabe beziehen
>  
>
> Gegeben habe ich
>  
>
> r(0) = [mm]\vektor{1 \\ 2}[/mm]
>  v(0) = [mm]k*(\vektor{3\\ -1})[/mm]
>  lv(0)l
> = 2
>  a(t) = [mm]\vektor{3 \\ -1}[/mm] Gilt diese beschleunigung nicht
> nur für a(0)?
>  
>
> Nun kann ich k bestimmen, damit der Betrag 2 gibt. Wie
> bereits berechnet ergibt dies k = [mm]\bruch{2}{\wurzel{10}}[/mm]
>  
>
> Nun habt ihr mir gesagt
>  
>
> v(t) = v(0) + [mm]\integral[/mm] a(t) dt = [mm]\bruch{2}{\wurzel{10}}[/mm] *
> [mm]\vektor{3 \\ -1}[/mm] + [mm]\vektor{3t \\ -t}[/mm]
>  
> Nun
>  
> r(t) = r(0) + [mm]\integral[/mm] v(t) dt = [mm]\vektor{1 \\ 2}[/mm] +
> [mm]\bruch{2}{\wurzel{10}}[/mm] * [mm]\vektor{3t \\ -1t}[/mm] +
> [mm]\vektor{1.5t^2 \\ \bruch{1}{2}t^2}[/mm]


Hier hat sich ein Vorzeichenfehler eingeschlichen:

[mm]\vektor{1 \\ 2}+ \bruch{2}{\wurzel{10}} * \vektor{3t \\ -1t} +\vektor{1.5t^2 \\ \red{-}\bruch{1}{2}t^2}[/mm]


>  
> Irgendwas stimmt da nicht
>  
> In der Lösung steht:
>  
> x(t) = 3/2 [mm]t^2[/mm] + [mm]bruch{6}{\wurzel{10}}[/mm] t + 1
>  y(t) = -1/2 [mm]t^2[/mm] - [mm]bruch{2}{\wurzel{10}}[/mm] t + 2
>  
> Danke, Gruss Kuriger


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]