www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Ortskurve
Ortskurve < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ortskurve: Tipp?
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:19 Di 23.11.2010
Autor: greenrock

Hallo!
Ich komme gerade bei einer Aufgabe nicht weiter und bitte deshalb um eure Hilfe.

Also folgendes Problem. wir haben eine Funktion mit 2 Unbekannten bekommen  [mm] f(x)=x^4-k*x^2. [/mm] Hiermit sollten wir zuerst eine Kurvendiskussion durchführen, hier liegt ja noch nicht das Problem.
Als nächstes wurde uns erklärt wie man das mit der Ortskurve ausrechnet, wofür wir die Extremstelle Wurzel k/2 verwendet haben. Als f(x) kam zunächst [mm] -k^2/4 [/mm] heraus. Klar das man hierfür den x-Wert in die Ausgangsfunktion einsetzen muss. Nur weiß ich nicht wie man dann auf das Ergebnis [mm] (-k^2/4) [/mm] gelangt??
Also man setzt ja ein f(Wurzel k/2)= (Wurzel [mm] k/2)^4-k*(Wurzel k/2)^2 [/mm]
nur verstehe ich das nicht so ganz wie man dann [mm] -k^2/4 [/mm] heraus bekommt.
  Im Prinzip habe ich das mit der Ortskurve verstanden, nur sollen wir das jetzt mit der Wechselstelle machen.
Den x-Wert habe ich schon herausgefunden (Wurzel 2k/12), wobei ich hier auch noch einmal fragen möchte, ob das stimmt.
Nur kann mir bitte jemand helfen wie ich dann den y-Wert ausrechne?
Also muss den ja in f(x) einsetzen, nur kommt bei mir nichts raus ~.~


Danke im Voraus

LG

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Ortskurve: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Di 23.11.2010
Autor: kuhfi

Hi,
also erstmal zu deiner Wendestelle bzw. Wechselstelle, die ist so an sich richtig, ich würde den Bruch allerdings noch kürzen.

Dann zu dem Rechenweg für die Ordinate der Extremstelle:
So, wie du es aufgeschrieben hast, ist das schon der richtige Ansatz. Jetzt musst du die Exponenten halt nurnoch verrechnen, will heißen - wie bei dem [mm] x^4 [/mm] - die Wurzel entsprechend auflösen und die "restlichen" Exponenten noch verrechnen. Das mit der Wurzel sollte bei [mm]k*(\sqrt{k/2})^2[/mm] noch einfacher sein. :)
Hinterher sollten zwei Brüche rauskommen, die du einfach addieren bzw. subtrahieren musst, wo dann genau das von dir beschriebene [mm]-k^2/4[/mm] rauskommt.
Ich hoffe ich konnte helfen, wir hatten die gleiche Aufgabe auch heute.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]