www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Orthonormale Basis
Orthonormale Basis < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormale Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Fr 08.04.2011
Autor: dreamweaver

Aufgabe
Konstruieren Sie orthonormale Basen des [mm] \IR^{3} [/mm] mit dem Gram-Schmidt´schen Orthogonalisierungsverfahren unter der Verwendung der gegebenen Vektoren:

a) [mm] \vec{v_1} [/mm] = [mm] (3,-\wurzel{3},2\wurzel{6})^{T}, \vec{v_2} [/mm] = [mm] (0,\wurzel{3},\wurzel{6})^{T}, \vec{v_3} [/mm] = [mm] (-3,\wurzel{3},2\wurzel{6})^{T} [/mm]

b) Geben Sie den Vektor [mm] \vec{v} [/mm] = [mm] (1,2,3)^{T} [/mm] in der neuen Basis von a) an.

Hallo, ich brauch mal wieder eure Hilfe.

Also Schritt 1 ist ja das Orthogonalisieren:

[mm] \vec{w_1} [/mm] = [mm] \vec{v_1} [/mm] hier leg ich fest auf welchen Vektor alle anderen orthogonal sein sollen oder?

[mm] \vec{w_2} [/mm] = [mm] -\bruch{\vec{v_2}\vec{w_1}}{\vec{w_1}\vec{w_1}} \vec{w_1} [/mm] + [mm] \vec{v_2} [/mm] = [mm] -\bruch{9}{30}\vektor{3 \\ -\wurzel{3} \\ \wurzel{24}} [/mm] + [mm] \vektor{0 \\ \wurzel{3} \\ \wurzel{6}} [/mm]

So hier hab ich schon meine ersten Schwierigkeiten. Muss ich hier beim Addieren den zweiten Vektor auf den Nenner 30 bringen? Was mach ich mit der 9 im Zähler? Wird die irgendwo dazumultipliziert, oder addiere ich einfach beide Vektoren und streiche [mm] \bruch{9}{30} [/mm] da es ja nur um die Richtung geht?

Lg

        
Bezug
Orthonormale Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Fr 08.04.2011
Autor: MathePower

Hallo dreamweaver,

> Konstruieren Sie orthonormale Basen des [mm]\IR^{3}[/mm] mit dem
> Gram-Schmidt´schen Orthogonalisierungsverfahren unter der
> Verwendung der gegebenen Vektoren:
>  
> a) [mm]\vec{v_1}[/mm] = [mm](3,-\wurzel{3},2\wurzel{6})^{T}, \vec{v_2}[/mm] =
> [mm](0,\wurzel{3},\wurzel{6})^{T}, \vec{v_3}[/mm] =
> [mm](-3,\wurzel{3},2\wurzel{6})^{T}[/mm]
>  
> b) Geben Sie den Vektor [mm]\vec{v}[/mm] = [mm](1,2,3)^{T}[/mm] in der neuen
> Basis von a) an.
>  Hallo, ich brauch mal wieder eure Hilfe.
>  
> Also Schritt 1 ist ja das Orthogonalisieren:
>  
> [mm]\vec{w_1}[/mm] = [mm]\vec{v_1}[/mm] hier leg ich fest auf welchen Vektor
> alle anderen orthogonal sein sollen oder?
>  
> [mm]\vec{w_2}[/mm] = [mm]-\bruch{\vec{v_2}\vec{w_1}}{\vec{w_1}\vec{w_1}} \vec{w_1}[/mm]
> + [mm]\vec{v_2}[/mm] = [mm]-\bruch{9}{30}\vektor{3 \\ -\wurzel{3} \\ \wurzel{24}}[/mm]
> + [mm]\vektor{0 \\ \wurzel{3} \\ \wurzel{6}}[/mm]


Hier muss es doch lauten:

[mm]-\bruch{9}{3\red{6}}\vektor{3 \\ -\wurzel{3} \\ \wurzel{24}} + \vektor{0 \\ \wurzel{3} \\ \wurzel{6}}[/mm]


>  
> So hier hab ich schon meine ersten Schwierigkeiten. Muss
> ich hier beim Addieren den zweiten Vektor auf den Nenner 30
> bringen? Was mach ich mit der 9 im Zähler? Wird die
> irgendwo dazumultipliziert, oder addiere ich einfach beide
> Vektoren und streiche [mm]\bruch{9}{30}[/mm] da es ja nur um die
> Richtung geht?


Das rechnest Du wie gewöhnlich aus, ohne irgendetwas wegzulassen.


>  
> Lg



Gruss
MathePower

Bezug
                
Bezug
Orthonormale Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:05 Fr 08.04.2011
Autor: dreamweaver

Alles klar danke!
Der Rest hat sich somit auch erledigt!

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]