www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Orthonormalbasis/-projektion
Orthonormalbasis/-projektion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasis/-projektion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:54 Sa 21.05.2005
Autor: Michael1982

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo, ich hab gerade ne Aufgabe gelöst, die ich am Diensatag abgeben muss. Allerdings kommt da bei mir ein sehr seltsames Ergebnis heraus. Kannst du dir das bitte mal ansehen und mir dann schreiben ob ich richtig gerechnet habe. Danke schon mal

Die Aufgabe:
Sei U der von den Vektoren  [mm] v_{1}=(2,0,1,2)^{T} [/mm] und  [mm] v_{2}=(1,2,2,4)^{T} [/mm] aufgespannte Untervektorraumes des  [mm] R^{4}. [/mm]

a) bestimmen Sie die Orthonormalbasis von U.

Meine Rechnung:
[mm] v_{1}= u_{1}=(2,0,1,2)^{T} [/mm]
[mm] u_{1}*u_{1}=9 [/mm]
[mm] w_{1}= \bruch{1}{3}*(2,0,1,2)^{T} [/mm]

[mm] u_{2}= \vektor{1 \\ 2 \\ 2 \\ 4} [/mm] -   [mm] (\vektor{1 \\ 2 \\ 2 \\ 4} [/mm] * [mm] \vektor{2 \\ 0 \\ 1 \\ 2})/9 [/mm]  * [mm] \vektor{2 \\ 0 \\ 1 \\ 4}= \bruch{1}{3} [/mm] * [mm] \vektor{-5 \\ 6 \\ 2 \\ 4} [/mm]

[mm] w_{2}= \bruch{1}{9}*\vektor{-5 \\ 6 \\ 2 \\ 4} [/mm]

b) Berechnun Sie die Orthonormalprojektion des Vektors [mm] x=(3,1,0,2)^{T} [/mm] auf U.

Meine Rechnung:

[mm] Px=(x,w_{1})w_{1} [/mm] + [mm] (x,w_{2})w_{2} [/mm]

[mm] \bruch{1}{9}*(\vektor{3 \\ 1 \\ 0 \\ 2} [/mm] * [mm] \vektor{2 \\ 0 \\ 1 \\ 2} [/mm] ) *  [mm] \vektor{2 \\ 0 \\ 1 \\ 2} [/mm] + [mm] \bruch{1}{81}*(\vektor{3 \\ 1 \\ 0 \\ 2} [/mm] * [mm] \vektor{-5 \\ 2 \\ 2 \\ 4} [/mm] ) *  [mm] \vektor{-5 \\ 2 \\ 2 \\ 4} [/mm]

Und das Ergebnis aus der Rechnung (das ich etwas komisch finde):
[mm] \bruch{1}{81}*(\vektor{205 \\ -10 \\ 80 \\ 160} [/mm]

c) Es sein nun  [mm] \partial: R^{4} [/mm] -> [mm] R^{4} [/mm] die orthogonale Projektion von  [mm] R^{4} [/mm] auf dem Untervektorraum U. Bestimmen Sie die Abbildungsmatrix von  [mm] \delta [/mm] bezüglich der Standartbasis des [mm] R^{4}. [/mm]

Wie man das macht hab ich keine Ahnung. Wenn mir da jemand nen Ansatz geben könnte oder ne Formel wäre ich sehr dankbar.

Also nochmals schon mal im vorraus vielen Dank für die Hilfe.




        
Bezug
Orthonormalbasis/-projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 So 22.05.2005
Autor: NECO

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo, ich hab gerade ne Aufgabe gelöst, die ich am Diensatag abgeben muss. Allerdings kommt da bei mir ein sehr seltsames Ergebnis heraus. Kannst du dir das bitte mal ansehen und mir dann schreiben ob ich richtig gerechnet habe. Danke schon mal

Die Aufgabe:
Sei U der von den Vektoren  [mm] v_{1}=(2,0,1,2)^{T} [/mm] und  [mm] v_{2}=(1,2,2,4)^{T} [/mm] aufgespannte Untervektorraumes des  [mm] R^{4}. [/mm]

a) bestimmen Sie die Orthonormalbasis von U.

Meine Rechnung:
[mm] v_{1}= u_{1}=(2,0,1,2)^{T} [/mm]
[mm] u_{1}*u_{1}=9 [/mm]
[mm] w_{1}= \bruch{1}{3}*(2,0,1,2)^{T} [/mm]

Bis hierhin sieht ok aus.!!



[mm] u_{2}= \vektor{1 \\ 2 \\ 2 \\ 4} [/mm] -   [mm] (\vektor{1 \\ 2 \\ 2 \\ 4} [/mm] * [mm] \vektor{2 \\ 0 \\ 1 \\ 2})/9 [/mm]  * $ [mm] [red]\vektor{2 \\ 0 \\ 1 \\ 4}[/red]$= \bruch{1}{3} *\vektor{-5 \\ 6 \\ 2 \\ 4} [/mm]

Hie ist eine Fehler, Ich glaube das ist eine Tipfehler. :-)  Also von hier noch mal anfangen .  REst kannst du bestimmt. wenn nicht frag ruhig.

[mm] w_{2}= \bruch{1}{9}*\vektor{-5 \\ 6 \\ 2 \\ 4} [/mm]

b) Berechnun Sie die Orthonormalprojektion des Vektors [mm] x=(3,1,0,2)^{T} [/mm] auf U.

Meine Rechnung:

[mm] Px=(x,w_{1})w_{1} [/mm] + [mm] (x,w_{2})w_{2} [/mm]

[mm] \bruch{1}{9}*(\vektor{3 \\ 1 \\ 0 \\ 2} [/mm] * [mm] \vektor{2 \\ 0 \\ 1 \\ 2} [/mm] ) *  [mm] \vektor{2 \\ 0 \\ 1 \\ 2} [/mm] + [mm] \bruch{1}{81}*(\vektor{3 \\ 1 \\ 0 \\ 2} [/mm] * [mm] \vektor{-5 \\ 2 \\ 2 \\ 4} [/mm] ) *  [mm] \vektor{-5 \\ 2 \\ 2 \\ 4} [/mm]

Und das Ergebnis aus der Rechnung (das ich etwas komisch finde):
[mm] \bruch{1}{81}*(\vektor{205 \\ -10 \\ 80 \\ 160} [/mm]

c) Es sein nun  [mm] \partial: R^{4} [/mm] -> [mm] R^{4} [/mm] die orthogonale Projektion von  [mm] R^{4} [/mm] auf dem Untervektorraum U. Bestimmen Sie die Abbildungsmatrix von  [mm] \delta [/mm] bezüglich der Standartbasis des [mm] R^{4}. [/mm]

Wie man das macht hab ich keine Ahnung. Wenn mir da jemand nen Ansatz

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]