Orthonormalbasis < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:42 Fr 27.08.2010 | Autor: | peeetaaa |
Aufgabe | Es seien V:= [mm] \IR^{3x1} [/mm] versehen mit dem Standardskalarprodukt, und U:= < [mm] \vektor{1 \\ -1 \\ 0} [/mm] , [mm] \vektor{0 \\ 1 \\ -1} >_{\IR} \le [/mm] V
Man berechne Orthonormalbasen für U und für [mm] U^\perp [/mm] |
Hallo zusammen,
also ich komme bei dieser Aufgabe nicht weiter.
Hab zuerst angefangen eine Orthogonalbasis für U zu berechnen, indem ich das Gram-Schmidt Verfahren angewendet habe.
[mm] u_1= v_1 [/mm] = [mm] \vektor{1 \\ -1 \\ 0}
[/mm]
[mm] u_2 [/mm] = [mm] v_2 [/mm] - [mm] \bruch{ }{} *u_1
[/mm]
[mm] =\vektor{0 \\ 1 \\ -1} [/mm] + [mm] \bruch{1}{2} [/mm] * [mm] \vektor{1 \\ -1 \\ 0}
[/mm]
= [mm] \vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1}
[/mm]
und dann habe ich diese beiden Basisvektoren normiert
[mm] \vektor{1 \\ -1 \\ 0} [/mm] * [mm] \bruch{1}{ ||v_1||} [/mm] = [mm] \vektor{1 \\ -1 \\ 0} [/mm] * [mm] \bruch{1}{\wurzel{2}}
[/mm]
[mm] \vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1} [/mm] * [mm] \bruch{1}{||v_2||} [/mm] = [mm] \vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1} [/mm] * [mm] \bruch{\wurzel{6}}{3}
[/mm]
ist das so schonmal richtig?
aber was mein eigentliches problem ist, ich weiß einfach nicht wie ich die Orthonormalbasis für [mm] U^\perp [/mm] herausbekomme. Ich kann mir nicht vorstellen wie der Senkrechtraum aussehen soll.
kann mir da vllt jmd helfen?
danke. gruß,
peeetaaa
|
|
|
|
Hallo peeetaaa,
>Aufgabe
> Es seien V:= $ [mm] \IR^{3x1} [/mm] $ versehen mit dem Standardskalarprodukt, und U:= < $ [mm] \vektor{1 \\ -1 \\ 0} [/mm] $ , $ [mm] \vektor{0 \\ 1 \\ -1} >_{\IR} \le [/mm] $ V
>Man berechne Orthonormalbasen für U und für $ [mm] U^\perp [/mm] $
> Hallo zusammen,
> also ich komme bei dieser Aufgabe nicht weiter.
> Hab zuerst angefangen eine Orthogonalbasis für U zu berechnen, indem ich das Gram-Schmidt Verfahren angewendet habe.
> $ [mm] u_1= v_1 [/mm] $ = $ [mm] \vektor{1 \\ -1 \\ 0} [/mm] $
> $ [mm] u_2 [/mm] $ = $ [mm] v_2 [/mm] $ - $ [mm] \bruch{ }{} \cdot{}u_1 [/mm] $
> $ [mm] =\vektor{0 \\ 1 \\ -1} [/mm] $ + $ [mm] \bruch{1}{2} [/mm] $ * $ [mm] \vektor{1 \\ -1 \\ 0} [/mm] $
> = $ [mm] \vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1} [/mm] $
> und dann habe ich diese beiden Basisvektoren normiert
> $ [mm] \vektor{1 \\ -1 \\ 0} [/mm] $ * $ [mm] \bruch{1}{ ||v_1||} [/mm] $ = $ [mm] \vektor{1 \\ -1 \\ 0} [/mm] $ * $ [mm] \bruch{1}{\wurzel{2}} [/mm] $
> $ [mm] \vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1} [/mm] $ * $ [mm] \bruch{1}{||v_2||} [/mm] $ = $ [mm] \vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1} [/mm] $ * $ [mm] \bruch{\wurzel{6}}{3} [/mm] $
Das lässt sich noch etwas anders schreiben:
[mm]u_{2}=\bruch{1}{\wurzel{6}}*\vektor{1 \\ 1 \\ -2}[/mm]
> ist das so schonmal richtig?
Ja.
> aber was mein eigentliches problem ist, ich weiß einfach nicht wie ich die Orthonormalbasis für $ [mm] U^\perp [/mm] $ herausbekomme. Ich kann mir nicht vorstellen wie der Senkrechtraum aussehen soll.
Da 3 Vektoren des [mm]\IR^{3}[/mm] eine Basis bilden,
und 2 dieser Vektoren für U vergeben sind, bleibt für
[mm]U^{\perp}[/mm] nur noch ein Vektor uebrig.
Dieser Vektor muss auf den Vektoren von U senkrecht stehen.
> kann mir da vllt jmd helfen?
> danke. gruß,
> peeetaaa
Gruss
MathePower
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:06 Fr 27.08.2010 | Autor: | Marcel |
Hallo,
> Es seien V:= [mm]\IR^{3x1}[/mm] versehen mit dem
> Standardskalarprodukt, und U:= < [mm]\vektor{1 \\ -1 \\ 0}[/mm] ,
> [mm]\vektor{0 \\ 1 \\ -1} >_{\IR} \le[/mm] V
> Man berechne Orthonormalbasen für U und für [mm]U^\perp[/mm]
> Hallo zusammen,
>
> also ich komme bei dieser Aufgabe nicht weiter.
> Hab zuerst angefangen eine Orthogonalbasis für U zu
> berechnen, indem ich das Gram-Schmidt Verfahren angewendet
> habe.
>
> [mm]u_1= v_1[/mm] = [mm]\vektor{1 \\ -1 \\ 0}[/mm]
> [mm]u_2[/mm] = [mm]v_2[/mm] - [mm]\bruch{ }{} *u_1[/mm]
>
> [mm]=\vektor{0 \\ 1 \\ -1}[/mm] + [mm]\bruch{1}{2}[/mm] * [mm]\vektor{1 \\ -1 \\ 0}[/mm]
>
> = [mm]\vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1}[/mm]
>
> und dann habe ich diese beiden Basisvektoren normiert
>
> [mm]\vektor{1 \\ -1 \\ 0}[/mm] * [mm]\bruch{1}{ ||v_1||}[/mm] = [mm]\vektor{1 \\ -1 \\ 0}[/mm]
> * [mm]\bruch{1}{\wurzel{2}}[/mm]
>
> [mm]\vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1}[/mm] *
> [mm]\bruch{1}{||v_2||}[/mm] = [mm]\vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1}[/mm]
> * [mm]\bruch{\wurzel{6}}{3}[/mm]
>
> ist das so schonmal richtig?
> aber was mein eigentliches problem ist, ich weiß einfach
> nicht wie ich die Orthonormalbasis für [mm]U^\perp[/mm]
> herausbekomme. Ich kann mir nicht vorstellen wie der
> Senkrechtraum aussehen soll.
es gibt hier zwei Wege mit dem Hinweis von Mathepower. Der erste ist ein wenig unelegant, aber der Ansatz ist allgemein: Man benutzt, dass zwei Vektoren genau dann senkrecht zueinander stehen, wenn das Skalarprodukt zwischen den beiden Null ergibt.
Der zweite geht hier, weil [mm] $U\,$ [/mm] schon ein zweidimensionaler Unterraum des speziellen Raums [mm] $\IR^3$ [/mm] versehen mit dem Standardskalarprodukt ist. Du hast schon eine Orthonormalbasis von [mm] $U\,$ [/mm] gefunden, und diese besteht aus zwei linear unabhängigen Vektoren von [mm] $U\,.$ [/mm]
Einen Vektor, der senkrecht auf die beiden steht, erhältst Du nun mittels des Kreuzprodukts (das ist was "spezielles", was (soweit ich gerade richtig informiert bin) man nur im [mm] $\IR^3$ [/mm] in dieser Form hat und verwenden kann).
(Sollte das Kreuzprodukt nun einen nichtnormieren Vektor ergeben, so musst Du halt noch durch die Länge des Vektors dividieren, und schon hast Du eine Orthonormalbasis (bestehend aus einem Vektor) von [mm] $U^{\perp}\,.$ [/mm] Aber wegen der geometrischen Deutung des Kreuzprodukts sollte das Kreuzprodukt doch, wenn ich das gerade richtig sehe, eh einen Vektor der Länge [mm] $1\,$ [/mm] ergeben.)
Beste Grüße,
Marcel
|
|
|
|