Orthogonalsystem < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:51 So 11.06.2006 | Autor: | Frank26 |
Aufgabe | Sei [mm] C^0([-1,1]) [/mm] der raum der komplexwertigen stetigen Funktionen mit folgendem Skalarprodukt:
[mm] (f,g)=\int_{-1}^{1}{f(x)\overline{g(x)}dx}.
[/mm]
Zeigen sie, dass [mm] \phi_j [/mm] mit [mm] \phi_j=\bruch{d^j}{dx^j}(x^2-1)^j [/mm] ein Orthogonalsystem ist.
Wie kann man aus den [mm] \phi_j [/mm] ein Orthonormalsystem machen? |
Hallo,
meine erste Idee war die Orthogonalität mit partieller Integration zu zeigen, da ich damit aber nicht weiter gekommen bin, habe ich erst mal explizite Formen für die [mm] \phi_j [/mm] ausgerechnet. Dabei habe ich erhalten:
für j gerade:
[mm] \phi_j=\sum_{k=0}^{\bruch{j}{2}}\bruch{j!}{(k+\bruch{j}{2})!(\bruch{j}{2}-k)!} \bruch{(2k+j)!}{(2k)!}x^{2k}(-1)^{\bruch{j}{2}-k}
[/mm]
und für j ungerade:
[mm] \phi_j=\sum_{k=0}^{\bruch{j-1}{2}}\bruch{j!}{(k+\bruch{j+1}{2})!(\bruch{j-1}{2}-k)!} \bruch{(2k+j+1)!}{(2k+1)!}x^{2k+1}(-1)^{\bruch{j-1}{2}-k}
[/mm]
Dann habe ich versucht mit dieser Form die Produkte der Form [mm] \phi_j\cdot\phi_{j'} [/mm] ausrechnen und zu zeigen, dass das Integral Null ergibt. Aber die Ausdrücke wurden so unübersichtlicht, das ich nichts mehr erkennen konnte. Ich habe auch irgendwie das Gefühl, das man auch besser mehr argumentiert als wirklich alles explizit auszurechnen, daher wollte ich fragen, ob jemand eine Idee hat, wie ich besser an die Aufgabe rangehen kann.
Gruß
Frank
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:04 So 11.06.2006 | Autor: | choosy |
Hi, also ich würde mal die Gram-Schmidt orthonormalisierung bemühen.
(wenn du diese auf die Monome anwedest kommt etwas sehr ähnliches raus..die legendre polynome)
Du musst ja allerdings nur orthogonalisieren....
|
|
|
|