www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Orthogonalmatrizen
Orthogonalmatrizen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Sa 08.02.2014
Autor: andreas01

Aufgabe
<br>


<br>
Liebe KollegInnen,

Orthogonalmatrizen = O - Matrizen

es gibt ja 2 Arten von O-Matrizen: solche mit det = 1
und solche mit det = -1.
Die mit det = 1 sind identisch mit SL(n,k).
/spezielle lineare Gruppe/

Sind folgende Aussagen richtig?

1) SL(n,k) ist Normalteiler in der Menge der O-Matrizen.
2) ASL(n,k) wäre eine Linksnebenklasse(die einzige) zu
   SL(n,k) mit bel.Element A aus der Menge der Matrizen  
   mit det = -1. Somit könnte jede Matrix B aus ASL(n,k)
   dargestellt werden als: B = A*S, S Element aus
   SL(n,k). * bedeute Matrizenmultiplikation und A sei
   ein bel. Repräsentant der Linksnebenklasse

Danke und liebe Grüße,
Andreas












        
Bezug
Orthogonalmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 So 09.02.2014
Autor: UniversellesObjekt

Hallo andreas,

1) Ja, denn SL(n,k) ist der Kern der Determinante. Aber schreibe bitte Normalteiler der Gruppe der orthogonalen Matrizen, nicht der Menge.
2) Ja, denn das Bild der Orthogonalen Matrizen unter der Determinante ist eine Gruppe der Ordnung zwei. Somit ist der Index von SL(n,k) in O genau 2, es gibt also genau zwei Nebenklassen. Alle weiteren Aussagen folgen daraus, dass die einer Gruppe zugrunde liegende Menge die disjunkte Vereinigung aller Nebenklassen einer festen Untergruppe ist (Satz von Lagrange).

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
Orthogonalmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 So 09.02.2014
Autor: andreas01

Danke für Deine Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]