Orthogonalität zweier Vektoren < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 13:46 Sa 17.11.2007 | Autor: | fabson |
Aufgabe | Zeigen Sie, dass zwei Vektoren x,y [mm] \in \IR^{n} [/mm] genau dann zueinander orthogonal sind, d.h. [mm] \left\langle x,y \right\rangle [/mm] = 0, wenn für alle [mm] \lambda \in \IR [/mm] gilt [mm] \left|\left| x + \lambda y \right|\right| \ge \left|\left| x \right|\right| [/mm] . |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Das hab ich als Lösungsidee:
Zu zeigen: [mm] \left|\left| x + \lambda y \right|\right| \ge \left|\left| x \right|\right| \gdw \left\langle x,y \right\rangle [/mm] = 0
Beweis: Sei [mm] \left|\left| x + \lambda y \right|\right| \ge \left|\left| x \right|\right|, [/mm] so folgt nach dem Kosinussatz
[mm] \left|\left| \lambda y \right|\right|^{2} [/mm] + [mm] \left|\left|x\right|\right|^{2} [/mm] - [mm] 2\left|\lambda\right|*\left|\left|y\right|\right|*\left|\left|x\right|\right|*cos\frac{\left\langle x, y \right\rangle}{\left|\left|x\right|\right|*\left|\left|y\right|\right|} \ge \left|\left|x\right|\right|^2
[/mm]
[mm] \gdw \left|\left|\lambda y\right|\right|^2 \ge 2\left|\lambda\right|*\left|\left|y\right|\right|*\left|\left|x\right|\right|*cos\frac{\left\langle x, y \right\rangle}{\left|\left|x\right|\right|*\left|\left|y\right|\right|}
[/mm]
[mm] \gdw \left|\lambda\right|*\left|\left|y\right|\right| \ge 2*\left|\left|x\right|\right|*cos\frac{\left\langle x, y \right\rangle}{\left|\left|x\right|\right|*\left|\left|y\right|\right|}
[/mm]
[mm] \gdw 2*\left|\left|x\right|\right|*cos\frac{\left\langle x, y \right\rangle}{\left|\left|x\right|\right|*\left|\left|y\right|\right|} [/mm] = 0
[mm] \gdw \left\langle x, y \right\rangle [/mm] = 0
Ich bin mir jetzt nicht so sicher, ob die letzten zwei schritte wirklich Aequivalenzumformungen sind oder nur Implikationen. Bzw. muss ich jetzt noch die andere Richtung zeigen, oder ist das quasi schon mitbewiesen?
Gruß,
Fabian
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:00 Mo 19.11.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|