www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Orthogonales Komplement
Orthogonales Komplement < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonales Komplement: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Mo 22.04.2013
Autor: Trikolon

Aufgabe
Hallo, ich soll das orthogonale Komplement und vom Ergebnis wiederum das orthog. Komplement berechnen, und zwar für: U= < [mm] \vektor{1 \\ 1 \\ 0} [/mm]

Ich habe das Skalarprodukt gebildet von [mm] \vektor{x_1 \\ x_2 \\ x_3} [/mm] und < [mm] \vektor{1 \\ 1 \\ 0} [/mm] und dieses dann 0 gesetzt, dann erhalte ich als orthogonales komplement: [mm] U_1 [/mm] = < < [mm] \vektor{1 \\ -1 \\ \lambda } [/mm] >. Stimmt das so? Oder muss man das [mm] x_3 [/mm] = 0 setzen, aber eigentlich darf man ja jede beliebige reelle Zahl einsetzen.. Dann weiß ich aber nicht mehr, wie ich jetzt davon wiederum das orthogonale Komplement ausrechnen soll...

Danke schonmal.

        
Bezug
Orthogonales Komplement: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Mo 22.04.2013
Autor: steppenhahn

Hallo,

> Hallo, ich soll das orthogonale Komplement und vom Ergebnis
> wiederum das orthog. Komplement berechnen, und zwar für:
> U= < [mm]\vektor{1 \\ 1 \\ 0}[/mm]

Ich gehe mal davon aus, dass $U$ ein Untervektorraum von [mm] $\IR^2$ [/mm] sein soll und du auch das orthogonale Komplement in [mm] $\IR^3$ [/mm] berechnen sollst.

>  Ich habe das Skalarprodukt
> gebildet von [mm]\vektor{x_1 \\ x_2 \\ x_3}[/mm] und < [mm]\vektor{1 \\ 1 \\ 0}[/mm]
> und dieses dann 0 gesetzt, dann erhalte ich als
> orthogonales komplement: [mm]U_1[/mm] = < < [mm]\vektor{1 \\ -1 \\ \lambda }[/mm]
> >. Stimmt das so?

Nein. Durch $U$ wird doch eine Gerade durch den Ursprung beschrieben.
Alle Vektoren, die dazu orthogonal sind, bilden doch eine Ebene.
Dein orthogonales Komplement muss also aus 2 aufspannenden Vektoren bestehen.

Schau dir nochmal das Gleichungssystem

[mm] x_1 [/mm] + [mm] x_2 [/mm] = 0

an, was durch das Skalarprodukt = 0 setzen entsteht. Da kannst du nicht nur [mm] x_3 [/mm] beliebig wählen, sondern auch noch [mm] x_2 [/mm] ! Die Lösung dieses LGS ist also ein 2-dimensionaler Unterraum (das ist dann das orthogonale Komplement)


> Dann weiß ich aber nicht mehr, wie ich jetzt
> davon wiederum das orthogonale Komplement ausrechnen
> soll...

Naja, du hast ja dann 2 Vektoren (ich spoiler mal: (0,0,1) und (1,-1,0)), und das orthogonale Komplement zu dem von diesen Vektoren aufgespannten Untervektorraum ist die Menge der Vektoren, die zu beiden senkrecht stehen.

Damit hast du ein neues LGS

[mm] x_3 [/mm] = 0
[mm] x_1 [/mm] - [mm] x_2 [/mm] = 0

das es zu lösen gilt.


Viele Grüße,
Stefan

Bezug
                
Bezug
Orthogonales Komplement: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Di 23.04.2013
Autor: Trikolon

Gut, ok. Danke. Und das orthogonale Komplement vom orthogonalen Komplement ist dann wieder der Unterraum selbst.

Bezug
                        
Bezug
Orthogonales Komplement: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Mi 24.04.2013
Autor: Trikolon

Stimmt das, was ich oben in der Mitteilung geschrieben hatte?

Bezug
                                
Bezug
Orthogonales Komplement: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Mi 24.04.2013
Autor: steppenhahn

Hallo,

> Stimmt das, was ich oben in der Mitteilung geschrieben
> hatte?

[]Ja.

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]