www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Orthogonales Komplement
Orthogonales Komplement < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonales Komplement: Frage
Status: (Frage) beantwortet Status 
Datum: 17:43 Do 23.06.2005
Autor: Maddin84

Hallo!

Ich habe folgende Aufgabe gestellt bekommen:
Sei der  [mm] \IC^{4} [/mm] versehen mit dem natürlichen hermiteschen Skalarprodukt. Berechen das orthogonale Komplement des Unterraums, der von den Vektoren  [mm] \vektor{-1\\i\\0\\1}=a [/mm] und [mm] \vektor{i\\0\\2\\0}=b [/mm] aufgespannt wird.
Jetzt hab ich mir 2 Vektoren  [mm] \vec{c}, \vec{d} [/mm] genommen. Dann gilt ja für die Orthogonalität, dass das Skalarprodukt von a mit c und d=0, sowie das Skalarprodukt von b mit c und d=0 ist. Dann bekomme ich folgende 4 Gleichungen:
1. -c1 + ic2 +c4=0
2.ic1 + 2c3=0
3.-d1 +id2 + d4=0
4.id1 + 2d3=0

Und jetzt weiß ich nicht weiter. Ich könnte einfach eine Lösung raten und die dann überprüfen, aber wie kann ich das echnerisch machen?
Ich hoffe mir kann da jemand helfen

Danke,

Maddin

Ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
Orthogonales Komplement: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 Fr 24.06.2005
Autor: leonhard

Es reicht, wenn du die Gleichungen für einen Vektor x aufstellst. Die Lösungsmenge ist dann gerade der gesuchte Raum und sollte dann
schon 2-Dimensional sein.
Zur Bestimmung der Lösungsmenge z.B Gauss verwenden.
Schau dir das Skalarprodukt nochmal an. (so mit konjugiert komplex und so)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]