www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Orthogonale k-Beine
Orthogonale k-Beine < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale k-Beine: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:15 Sa 14.02.2015
Autor: Lisa641

Aufgabe
Seien
A = [mm] \vektor{1 \\ 0\\ 0\\ 1\\2\\1} [/mm] + < [mm] \vektor{0 \\ 1\\ 0\\ 0\\0\\0}, \vektor{0 \\ 0\\ 1\\ 0\\-1\\0}> [/mm]

B= [mm] \vektor{0 \\ 0\\ 0\\ 0\\0\\1} [/mm] + < [mm] \vektor{1 \\ 0\\ 0\\ 0\\0\\0}, \vektor{0 \\ 1\\ 0\\ -1\\0\\0}, \vektor{0 \\ 0\\ 1\\ 0\\-1\\0}, \vektor{0 \\ 0\\ 0\\ 1\\1\\0}> \le E_{5} [/mm]

Bestimme k = Dim U und l = Dim W, orthogonale k- bzw. l-Beine von  U bzw. W.


Hallo zusammen, ich bereite mich gerade für die Klausur vor und verstehe eine kleine Sache bei dieser Aufgabe nicht.

Die Translationsräume T(A) und T(B) sind uns aus der Aufgabenstellung bekannt.
Daher ist sind die Dimensionen: dim T(A) = 2 , dim T(B)= 4.
So muss ich einmanl orth. 2 - bzw. 4 - Beine bestimmen.

Ich habe im nächsten Schritt dann die ONBasis gebildet, indem ich die Vektoren in T(A) bzw. T(B) normiert habe.

ONB von T(A):
[mm] (\vektor{0 \\ 1\\ 0\\ 0\\0\\0}, \vektor{0 \\ 0\\ \bruch{1}{\wurzel{2}}\\ 0\\\bruch{-1}{\wurzel{2}}\\0}) [/mm]

ONB von T(B):
( [mm] \vektor{1 \\ 0\\ 0\\ 0\\0\\0}, \vektor{0 \\ \bruch{1}{\wurzel{2}}\\ 0\\ \bruch{-1}{\wurzel{2}}\\0\\0}, \vektor{0 \\ 0\\ \bruch{1}{\wurzel{2}}\\ 0\\\bruch{-1}{\wurzel{2}}\\0}, \vektor{0 \\ 0\\ 0\\ \bruch{1}{\wurzel{2}}\\\bruch{1}{\wurzel{2}}\\0}) [/mm]

Stimmen die ON-Basen so?

Orthonormale k-Beine sind ja definiert als:

Ein k+1 - Tupel heißt orth. k-Bein von E (Eukl. aff. Raum), wenn P [mm] \in E^{k+1} [/mm] mit [mm] (\overrightarrow{P_{0}P_{1}} [/mm] , ..., [mm] \overrightarrow{P_{0}P_{k}}) [/mm] ONSystem in T(E).

Nach der Definition müsste ich dann "einfach" meine ONBasen von meinem [mm] P_{0} [/mm] abziehen. Stimmt die Überlegung so?
Es wäre nett, wenn mir jemand helfen könnte :) LG

        
Bezug
Orthogonale k-Beine: Antwort
Status: (Antwort) fertig Status 
Datum: 10:26 So 15.02.2015
Autor: hippias


> Seien
> A = [mm]\vektor{1 \\ 0\\ 0\\ 1\\2\\1}[/mm] + < [mm]\vektor{0 \\ 1\\ 0\\ 0\\0\\0}, \vektor{0 \\ 0\\ 1\\ 0\\-1\\0}>[/mm]
>  
> B= [mm]\vektor{0 \\ 0\\ 0\\ 0\\0\\1}[/mm] + < [mm]\vektor{1 \\ 0\\ 0\\ 0\\0\\0}, \vektor{0 \\ 1\\ 0\\ -1\\0\\0}, \vektor{0 \\ 0\\ 1\\ 0\\-1\\0}, \vektor{0 \\ 0\\ 0\\ 1\\1\\0}> \le E_{5}[/mm]
>  
> Bestimme k = Dim U und l = Dim W, orthogonale k- bzw.
> l-Beine von  U bzw. W.
>  
> Hallo zusammen, ich bereite mich gerade für die Klausur
> vor und verstehe eine kleine Sache bei dieser Aufgabe
> nicht.
>
> Die Translationsräume T(A) und T(B) sind uns aus der
> Aufgabenstellung bekannt.
>  Daher ist sind die Dimensionen: dim T(A) = 2 , dim T(B)=
> 4.
>  So muss ich einmanl orth. 2 - bzw. 4 - Beine bestimmen.
>
> Ich habe im nächsten Schritt dann die ONBasis gebildet,
> indem ich die Vektoren in T(A) bzw. T(B) normiert habe.
>
> ONB von T(A):
>  [mm](\vektor{0 \\ 1\\ 0\\ 0\\0\\0}, \vektor{0 \\ 0\\ \bruch{1}{\wurzel{2}}\\ 0\\\bruch{-1}{\wurzel{2}}\\0})[/mm]

Dies ist eine ONB von $T(A)$.

>  
> ONB von T(B):
>  ( [mm]\vektor{1 \\ 0\\ 0\\ 0\\0\\0}, \vektor{0 \\ \bruch{1}{\wurzel{2}}\\ 0\\ \bruch{-1}{\wurzel{2}}\\0\\0}, \vektor{0 \\ 0\\ \bruch{1}{\wurzel{2}}\\ 0\\\bruch{-1}{\wurzel{2}}\\0}, \vektor{0 \\ 0\\ 0\\ \bruch{1}{\wurzel{2}}\\\bruch{1}{\wurzel{2}}\\0})[/mm]
>  

Diese Vektoren sind nicht paarweise orthogonal.

> Stimmen die ON-Basen so?
>
> Orthonormale k-Beine sind ja definiert als:
>
> Ein k+1 - Tupel heißt orth. k-Bein von E (Eukl. aff.
> Raum), wenn P [mm]\in E^{k+1}[/mm] mit [mm](\overrightarrow{P_{0}P_{1}}[/mm]
> , ..., [mm]\overrightarrow{P_{0}P_{k}})[/mm] ONSystem in T(E).
>  
> Nach der Definition müsste ich dann "einfach" meine
> ONBasen von meinem [mm]P_{0}[/mm] abziehen. Stimmt die Überlegung
> so?

Nein. Du betrachtest doch bereits Vektoren aus $T(E)$, daher hast Du bereits [mm] $P_{0}$ [/mm] abgezogen.

>  Es wäre nett, wenn mir jemand helfen könnte :) LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]