www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Orthogonale Projektion
Orthogonale Projektion < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Projektion: berechnen des min. Abstandes
Status: (Frage) beantwortet Status 
Datum: 11:33 Mi 12.10.2011
Autor: rammy

Aufgabe
Versuchen Sie nun zu berechnen, welcher Vektor, der als Linearkombination [mm] v=c_{1}v_{1}+c_{2}v_{2} [/mm] der Vektoren [mm] v_{1}=(1,2,0) [/mm] und [mm] v_{2}=(-1,2,0) [/mm] geschrieben werden kann, minimalen Abstand von w=(2,3,4) hat.

Hallo Liebe Leute!

Ich stehe wieder mal bei einem Übungsbsp. für die lineare Algebra an:

Meine Gedanken bis hierher:
ich muss ja die orthogonale Projektion auf den von v1,v2 aufgespannten Teilraum berechen, doch ich habe bereits hier Probleme.
Wie geht es dann weiteR?
Hat jemand kurze Anregungen und Tipps?

LG

        
Bezug
Orthogonale Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Mi 12.10.2011
Autor: fred97


> Versuchen Sie nun zu berechnen, welcher Vektor, der als
> Linearkombination [mm]v=c_{1}v_{1}+c_{2}v_{2}[/mm] der Vektoren
> [mm]v_{1}=(1,2,0)[/mm] und [mm]v_{2}=(-1,2,0)[/mm] geschrieben werden kann,
> minimalen Abstand von w=(2,3,4) hat.
>  Hallo Liebe Leute!
>  
> Ich stehe wieder mal bei einem Übungsbsp. für die lineare
> Algebra an:
>  
> Meine Gedanken bis hierher:
>  ich muss ja die orthogonale Projektion auf den von v1,v2
> aufgespannten Teilraum berechen, doch ich habe bereits hier
> Probleme.
>  Wie geht es dann weiteR?
> Hat jemand kurze Anregungen und Tipps?

Es ist schwer , Dir zu antworten, denn ich weiß nicht, was Ihr hattet und verwenden dürft.


Sei [mm] $L:=span(v_1,v_2)$ [/mm] die lineare Hülle von [mm] \{v_1,v_2\} [/mm]

Gesucht ist also ein $ [mm] v_0 \in [/mm] L$ mit:

                [mm] $||w-v_0|| \le [/mm] ||w-v||$   für alle $v [mm] \in [/mm] L$.

(dabei sei ||*|| die eukl. Norm auf [mm] \IR^3). [/mm]  Diese Approximationsaufgabe ist eindeutig lösbar. Sei [mm] v_0 [/mm] diese Lösung.

Dann gilt:  

          [mm] $(v_0-w) \perp [/mm] v$  für jedes $ v [mm] \in [/mm] L$, insbesondere:  [mm] $(v_0-w) \perp v_1$ [/mm]   und  [mm] $(v_0-w) \perp v_2$ [/mm]

Jetzt Du.

FRED


>  
> LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]