www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Orthogonale Projektion
Orthogonale Projektion < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Projektion: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:50 Fr 03.06.2011
Autor: Mbstudent

Aufgabe
Es sei W der von den Vektoren

[mm] w1=(0,1,0,1)^T, w2=(2,2,1,1)^T, w3=(0,-1,1,0)^T, w4=(1,1,1,1)^T [/mm]

aufgespannte Teilraum des [mm] R^4. [/mm] Man bestimme die Dimension von W und eine Orthonormalbasis von W. Wie lautet die Matrix der orthogonale Projektion des [mm] R^4 [/mm] auf W und auf [mm] W^T [/mm] bezüglich der Standardbasis?

Hallo alle zusammen,

die Dimension und die Orthonormalbasis habe ich erfolgreich bestimmt. Leider hab ich keinen Ansatz wie ich ihm zweiten Teil der Aufgabe die orthogonale Projektion bestimmen soll.
Ich hoffe Ihr könnt mir einen sinnvollen Typ geben.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Mit freundlichen Grüßen

Mbstudent

        
Bezug
Orthogonale Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 06:29 Sa 04.06.2011
Autor: angela.h.b.

Hallo,

[willkommenmr].

Zuerst muß man wissen, was die orthogonale Projektion auf W macht:

sie bildet alle Vektoren, die parallel zu W sind, auf sich selbst ab, und alle, die senkrecht auf W sind, auf den Nullvektor.

Hieraus sollte sich eine Lösungsmöglichkeit für Deine Aufgabe ergeben.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]