www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Orthogonale Projektion
Orthogonale Projektion < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Projektion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:46 So 18.06.2006
Autor: chiara021

Aufgabe
sei [mm] U=\{x \in \IR^{3} | x_{1}+3x_{2}+6x_{3}=0\} [/mm] und sei (x,y) = [mm] \summe_{i=1}^{3} x_{i}\*y_{i} [/mm] ein inneres Produkt. Bestimmen Sie ein [mm] x_{u} \in [/mm] U, sodass
[mm] \forall [/mm] y [mm] \in [/mm] U [mm] (\vektor{7\\ 4\\2} [/mm] - [mm] x_{u} [/mm] , y) = 0
Interpretieren Sie [mm] x_{u} [/mm] geometrisch.

Ich weiß zwar dass ich hier mit der orthogonalen Projektion arbeiten muss, doch fehlt mir irgendwie der richtige Ansatz.

Obige Aussage ist äquivalent zu

[mm] \parallel \vektor{7\\ 4\\2} [/mm] - [mm] x_{u} \parallel [/mm] = min(y [mm] \in [/mm] U) [mm] \parallel \vektor{7\\ 4\\2} [/mm] - y [mm] \parallel [/mm]

Ich weiß aber nicht ob das der richtige Weg ist.
Wär toll wenn mir jemand helfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthogonale Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 So 18.06.2006
Autor: goeba

Hi,

das sind ja ganz schön hochtrabende Formulierungen für eine im Prinzip simple Aufgabe. Warum heißt es "ein inneres Produkt"? Das ist doch einfach das Standardskalarprodukt.

Also:

- Dein Untervektorraum ist eine Ebene durch den Ursprung

- Deine Gleichung mit dem Skalarprodukt soll einfach eine Normalenform dieser Ebene werden

- damit das Klappt, muss der Vektor (7|4|2) - [mm] x_u [/mm] senkrecht zu U stehen. Das bekommst Du am leichtesten, wenn Du von (7|4|2) das Lot auf die Ebene fällst (also eine Geradengleichung mit (7|4|2) als Stützpunkt und dem Normalenvektor der Ebene als RV nimmst, dann den Schnittpunkt bestimmst, das ist dann auch gleich dein Lotfußpunkt).

Von Deinem Background her nehme ich mal an, dass Du es so in "normale Vektorrechnung" übersetzt lösen kannst. Wenn nicht, dann frag einfach nochmal nach.

Viel Spaß!

Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]