Orthogonale Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 18:19 So 02.07.2006 | Autor: | vicky |
Aufgabe | Seinen A,B [mm] \in [/mm] O(n) mit n ungerade.
z.z. det (A+B)(A-B) = 0 |
Hallo zusammen,
kann mir bei dieser Aufgabe vielleicht jemand helfen? O(n) ist die orthogonale Gruppe, diese haben wir wie folgt definiert: O(n)={A [mm] \in M(n\times n,\IR)|A^tA=E_{n} [/mm] } wobei [mm] E_{n} [/mm] die Einheitsmatrix ist.
Ich kann ja det (A+B)(A-B) = 0 auch als det(A+B)det(A-B) = 0 schreiben und einer dieser Determinanten muß dann Null sein. Bzw. kann ich die Klammern auch auflösen und die Determinante wie folgt schreiben: det [mm] A^2-B^2 [/mm] =0? Das würde ja aber bedeuten das [mm] A^2 [/mm] = [mm] B^2 [/mm] und somit A = B wäre, oder? Das wird mir wohl nicht viel weiter helfen...
Wenn ich nun die gesamte Gleichung aus der Aufgabe mit [mm] A^t [/mm] multipliziere wäre es dann eine Möglichkeit damit weiter zu machen? Also in etwa so:
det (A+B)(A-B) = 0 Multiplikation auf beiden Seiten mit [mm] A^t [/mm] also [mm] A^t [/mm] (det (A+B)(A-B) )= 0 also det [mm] A^t(A+B)A^t(A-B) [/mm] = 0 somit [mm] det(E_{n}+B)(E_{n}-B) [/mm] = 0 aber so müßte ja B gleich der Einheitsmatrix sein und das ist ja auch nicht immer der Fall. Wahrscheinlich muß ich 'n ungerade' aus der Aufgabenstellung mit in die Lösung einbeziehen doch damit kann ich leider momentan garnichts anfangen.
Also ich wäre euch sehr dankbar, wenn ihr mir helfen könntet.
Viele Dank schon mal.
Beste Grüße
vicky
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Di 04.07.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|