www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Orthogonale Matrix
Orthogonale Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Matrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:17 Mi 22.06.2016
Autor: nightsusi

Aufgabe
Sei [mm] A=\pmat{ \bruch{1}{2} & \wurzel{3} & -\wurzel{3} \\ -\bruch{\wurzel{3}}{4} & \bruch{1}{2} & -\bruch{3}{2} \\ 0 & 0 & -1 }\in M(3\times [/mm] 3, [mm] \IR). [/mm] Zeigen Sie, dass A orthogonal ist und bringen Sie A in die Normalenform orthogonaler Matrizen.

Hallo zusammen, bei der o.g. Aufgabe verstricke ich mich immer in Wiedersprüche und vielleicht könnt Ihr mir dabei helfen.

A ist genau dann orthogonal wenn gilt: [mm] A^T=A^{-1} [/mm]
also kann muss ich zeigen: [mm] A^T*A=E. [/mm] Das passt bei mir aber leider nicht. :-(

Alternativ ist A orthogonal wenn gilt: |det(A)|=1 das wiederrum passt! :-)

Vielleicht könnt ihr mir bei der ersten Definition weiterhelfen. DANKE schon mal im Voraus

LG SUSI

        
Bezug
Orthogonale Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Mi 22.06.2016
Autor: fred97


> Sei [mm]A=\pmat{ \bruch{1}{2} & \wurzel{3} & -\wurzel{3} \\ -\bruch{\wurzel{3}}{4} & \bruch{1}{2} & -\bruch{3}{2} \\ 0 & 0 & -1 }\in M(3\times[/mm]
> 3, [mm]\IR).[/mm] Zeigen Sie, dass A orthogonal ist und bringen Sie
> A in die Normalenform orthogonaler Matrizen.
>  Hallo zusammen, bei der o.g. Aufgabe verstricke ich mich
> immer in Wiedersprüche und vielleicht könnt Ihr mir dabei
> helfen.
>  
> A ist genau dann orthogonal wenn gilt: [mm]A^T=A^{-1}[/mm]
>  also kann muss ich zeigen: [mm]A^T*A=E.[/mm] Das passt bei mir aber
> leider nicht. :-(

Bei mir auch nicht ! Kurz: so wie die Matrix da oben steht, ist sie nicht orthogonal. Hast Du sie richtig abgeschrieben ?


>  
> Alternativ ist A orthogonal wenn gilt: |det(A)|=1


Wo hast Du das denn her ?????  Es gilt: ist A orthogonal, so ist |det(A)|=1 .

Die Umkehrung ist i.a. falsch !

FRED


> das
> wiederrum passt! :-)
>  
> Vielleicht könnt ihr mir bei der ersten Definition
> weiterhelfen. DANKE schon mal im Voraus
>  
> LG SUSI


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]