www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Orthogonale Ebenen
Orthogonale Ebenen < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Do 29.09.2022
Autor: Trikolon

Aufgabe
Bestimme a so, dass [mm] e_1: [/mm] x-ay+z=3 und [mm] e_2: \overrightarrow{x} [/mm] = [mm] \vektor{1 \\ 0 \\ 2} [/mm] r* [mm] \vektor{1\\ 2 \\ 3} [/mm] + s* [mm] \vektor{3 \\ 1 \\ -1} [/mm] orthogonal sind.

Ich habe zunächst einen Normalenvektor von [mm] e_2 [/mm] bestimmt und [mm] \vektor{1 \\ -2\\ 1} [/mm] gewählt.

Danach habe ich das Skalarpodukt der beiden Normalenvektoren von [mm] e_1 [/mm] und [mm] e_2 [/mm] berechnet und 2a+2=0 also a=-1 erhalten.

Passt das?

        
Bezug
Orthogonale Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 Do 29.09.2022
Autor: leduart

Hallo
Ja passt , also richtig und gut gemacht
Gruß leduart

Bezug
        
Bezug
Orthogonale Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:40 Fr 30.09.2022
Autor: Trikolon

Danke!

Ich war schon verwundert, da in der Musterlösung des Buches a=2 steht mit der Begründung, dass dann der Normalenvektor senkrecht zu den beiden Spannvektoren der anderen Ebene verläuft.

Bezug
                
Bezug
Orthogonale Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:33 Fr 30.09.2022
Autor: statler

Hi!

> Ich war schon verwundert, da in der Musterlösung des
> Buches a=2 steht mit der Begründung, dass dann der
> Normalenvektor senkrecht zu den beiden Spannvektoren der
> anderen Ebene verläuft.

Genau, aber dann sind die Ebenen parallel. Die Qualität von Schulbüchern scheint rapide abzunehmen.

Gruß
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]