www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Orthogonale Abbildung
Orthogonale Abbildung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Abbildung: Hilfe beim Lösungsansatz
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:40 Mi 16.01.2013
Autor: poeddl

Aufgabe
Wir betrachten den euklidischen Vektorraum [mm] R^2 [/mm] mit dem Standardskalarprodukt
[mm] <\vektor{x \\ y}>:≔x1y1+x2y2 [/mm]

und die Matrix-Abbildung

[mm] A:R^2 [/mm] → [mm] R^2 [/mm]

[mm] \vektor{x1 \\ x2} [/mm] → A [mm] \vektor{x1 \\ x2} [/mm] mit A = [mm] \pmat{ a11 & a12 \\ a21 & a22 } [/mm]

Sei
b = [mm] \vektor{-3 \\ 2} [/mm]
Berechnen Sie die Koeffizienten a11,a12,a21,a22 [mm] \in \IR, [/mm] sodass
1. der erste Spaltenvektor der Matrix A die Länge 1 hat und in dieselbe Richtung zeigt wie b und
2. die Matrix-Abbildung A orthogonal ist.



Hallo,

ich bin gerade dabei einige Aufgaben zu rechnen, aber bin schon wieder auf eine Aufgabe gestossen, bei der ich leider nicht weiterkomme...

Der Ansatz müsste ja irgendwas mit

[mm] \pmat{ cos phi & -sin phi \\ sin phi & cos phi } [/mm]

zu tun haben oder? (Wie gibt man hier ein Phi ein?!)
Aber wie genau gehe ich dort vor?

Ich wäre über jegliche Tipps dankbar.
Danke vorab! :)


        
Bezug
Orthogonale Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Do 17.01.2013
Autor: poeddl

Ich habe als Lösung jetzt folgendes raus. Ist das richtig?
Der Rechenweg ist mir irgendwie noch nicht so wirklich klar...

[mm] \pmat{ \bruch{-3}{\wurzel{13}} & \bruch{-2}{\wurzel{13}} \\ \bruch{2}{\wurzel{13}} & \bruch{-3}{\wurzel{13}} } [/mm]

Wäre super, wenn mir jemand weiterhelfen könnte. Vielen Dank!

Bezug
                
Bezug
Orthogonale Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Do 17.01.2013
Autor: fred97


> Ich habe als Lösung jetzt folgendes raus.


Ja, die unten stehende Matrix ist korrekt.



> Ist das
> richtig?


>  Der Rechenweg ist mir irgendwie noch nicht so wirklich
> klar...

Komisch, Du hast doch was gerechnet ? Was ist Dir an Deinen eigenen Rechnungen nicht klar ?

FRED

>
> [mm]\pmat{ \bruch{-3}{\wurzel{13}} & \bruch{-2}{\wurzel{13}} \\ \bruch{2}{\wurzel{13}} & \bruch{-3}{\wurzel{13}} }[/mm]
>  
> Wäre super, wenn mir jemand weiterhelfen könnte. Vielen
> Dank!


Bezug
                        
Bezug
Orthogonale Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Do 17.01.2013
Autor: poeddl

Hallo,
danke für deine Rückmeldung.
Ich habe es mit einer Kommilitonin gemacht.
Die Idee stammte von ihr, warum das so ist konnte
siw mir aber nicht sagen.
Kann mir das hier vielleicht jemand erklären?

Bezug
                                
Bezug
Orthogonale Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Do 17.01.2013
Autor: fred97

Ganz oben hattest Du doch schon den richtigenm Ansatz:

[mm] A=\pmat{ a & -b \\ b & a } [/mm]

Wenn A orthogonal ist, muß [mm] a^2+b^2=1 [/mm] sein

Die erste Spalte , also [mm] \vektor{a \\ b}, [/mm] ergibt sich aus obiger Bedingung 1.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]