www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Orthogonal. Maß / Konvergenz
Orthogonal. Maß / Konvergenz < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonal. Maß / Konvergenz: Idee
Status: (Frage) überfällig Status 
Datum: 18:21 Fr 20.08.2010
Autor: LiquidAcid

Hallo,

ich habe folgende Lebesgue-Dichte
[mm] \nu(dx) [/mm] = [mm] \frac{\sqrt{1-q}}{\pi} \sin(\varphi) \prod_{n=1}^{\infty}{(1-q^n) |1-q^n e^{2 i \varphi}|^2 dx} [/mm]
mit
x = [mm] \frac{2}{\sqrt{1-q}} \cos(\varphi) [/mm] und [mm] \varphi \in [0,\pi]. [/mm]
[mm] \nu [/mm] ist auf [mm] [-2/\sqrt{1-q},2/\sqrt{1-q}] [/mm] definiert und q [mm] \in [/mm] (-1,1) ist ein Deformationsparameter.

Wen es interessiert, das [mm] \nu [/mm] beschreibt das orthogonalisierende Maß für die q-Hermitepolynome, ich denke aber nicht dass dieses Wissen hier relevant ist.

OK, was ich momentan versuche ist folgendes: Für q [mm] \rightarrow [/mm] -1 soll [mm] \nu [/mm] angeblich in [mm] \frac{1}{2}(\delta_{-t} [/mm] + [mm] \delta_{+t}) [/mm] übergehen, wobei [mm] \delta_t [/mm] das Diracmaß im Punkt t sein soll. Keins der Paper, die ich zu dem Thema habe, zeigt das explizit und die Aussagen sind auch nicht identisch, da mal t=1 behauptet wird, dann wieder [mm] t=\sqrt{2}. [/mm] Wegen der Form des Trägers vermute ich mal eher, dass es [mm] \sqrt{2} [/mm] ist. Die Konvergenzaussage ist auch nicht explizit gegeben, es konvergiert (bzw. "goes to") einfach - ich vermute hier mal schwache Konvergenz, aber das ist erstmal geraten. Das versuche ich momentan nachzurechnen.

Für q [mm] \in [/mm] (-1,1) lässt sich das Gerät in eine Thetafunktionsdarstellung bringen. Ganz hilfreich, da für die meisten Betrachtungen die Produktdarstellung reichlich "unbequem" ist. Eine Form der Darstellung ist
[mm] \nu(dx) [/mm] = [mm] \frac{\sqrt{1-q}}{\pi} \sin(\varphi) \frac{1}{1-\gamma^2} \sum_{n=-\infty}^{\infty}{(-1)^n q^{n(n+1)/2} \gamma^{-2n} dx} [/mm]
mit [mm] \gamma [/mm] = [mm] \exp(i \varphi). [/mm]

Für den "schwache Konvergenz"-Ansatz habe ich eine Rechnung wiederverwendet, die ich beim Nachweis der Normiertheit (also [mm] \int_{\IR}{\nu dx} [/mm] = 1) bereits verwendet hatte:
[mm] \int_{\IR}{f(x) \nu dx} [/mm] = [mm] \frac{2}{\pi} q^{-1/8} \sum_{n=0}^{\infty}{(-1)^n q^{(2n+1)^2 / 8} \int_0^{\pi}{\sin(\varphi(2n+1)) \sin(\varphi) f(x) d\varphi}} [/mm]

Allerdings sieht man da (insbesondere wenn man noch x aus f(x) durch den entsprechenden [mm] \varphi [/mm] enthaltenden Term substituiert) gar nichts. Habe auch bereits versucht ohne Integration irgendeine Form vom approximierender Eins aus dem [mm] \nu [/mm] zu isolieren. Habe mich über Darstellungen vom Dirac-Delta schlau gemacht und irgendwas gesucht, was zumindestens entfernt so ähnlich aussieht wie ich es habe. Das einzige was ich bis jetzt gesehen habe ist die "formale Darstellung" durch Dirichlet-Kerne (siehe http://en.wikipedia.org/wiki/Dirac_delta_function unter "Fourier kernels").

Da wurde das Dirac durch
[mm] \delta(x) [/mm] = [mm] \frac{1}{2 \pi} \sum_{n=-\infty}^{\infty}{\exp(inx)} [/mm]
dargestellt. Habe versucht einen solchen Ausdruck zu isolieren, hat aber auch nicht gefruchtet.

Mir gehen zur Zeit die Ideen aus, zumal ja auch nicht richtig klar ist in welcher Weise da was konvergiert.

Irgendjemand eine Idee für einen Ansatz oder eventuell Hinweise auf Literatur, die Ansätze liefern könnte? Sucht man nach "weak convergence point measure" (oder auch "dirac measure") so findet sich nichts sonderlich interessantes...

Gruß,
Tobias


        
Bezug
Orthogonal. Maß / Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 04.09.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]