www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - Originalfunktion
Originalfunktion < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Originalfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:33 Do 05.01.2012
Autor: summerlove

Aufgabe
f(t)= [mm] t*sin^{3}(\alpha*t) [/mm]

[mm] \alpha \in \IR [/mm]

Berechnen sie explizit ausgehend von der Definitionsgleichung der Laplacetransformation oder der Verwendung geeigneter Sätze die Laplacetransformierte F(s) .

Hallo,

ich weiß leider nicht wie ich [mm] sin^{3}(\alpha*t) [/mm] passend umformen kann, damit ich Laplace-Sätze anwenden kann. Ich habe es mit Additionstheoremen versucht, aber irgendwie ist es nicht sonderlich leichter geworden dadurch. Ich habe am Ende trotzdem irgendwas mit [mm] (sin(\alpha*t) [/mm] * [mm] cos(\alpha*t) [/mm] ) stehen, und ich weiß nicht wie ich das löse wenn ich sowas habe.
Hat jemand einen Tipp für mich?

LG
Summerlove

        
Bezug
Originalfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 Do 05.01.2012
Autor: MathePower

Hallo summerlove,

> f(t)= [mm]t*sin^{3}(\alpha*t)[/mm]
>  
> [mm]\alpha \in \IR[/mm]
>  
> Berechnen sie explizit ausgehend von der
> Definitionsgleichung der Laplacetransformation oder der
> Verwendung geeigneter Sätze die Laplacetransformierte F(s)
> .
>  Hallo,
>  
> ich weiß leider nicht wie ich [mm]sin^{3}(\alpha*t)[/mm] passend
> umformen kann, damit ich Laplace-Sätze anwenden kann. Ich
> habe es mit Additionstheoremen versucht, aber irgendwie ist
> es nicht sonderlich leichter geworden dadurch. Ich habe am
> Ende trotzdem irgendwas mit [mm](sin(\alpha*t)[/mm] * [mm]cos(\alpha*t)[/mm]
> ) stehen, und ich weiß nicht wie ich das löse wenn ich
> sowas habe.
>  Hat jemand einen Tipp für mich?
>  


Schau mal hier: []Winkelfunktionen und weitere Vielfache


> LG
> Summerlove


Gruss
MathePower

Bezug
                
Bezug
Originalfunktion: rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:54 Do 05.01.2012
Autor: summerlove

Aufgabe
f(t)= [mm] t*sin^{3}(\alpha*t) [/mm]

Danke für die Antwort.

Also wenn ich [mm] sin^{3}(\alpha*t) [/mm] auseinanderziehe als
f(t)= [mm] sin(\alpha*t)* sin^{2}(\alpha*t). [/mm]

Und dann schreibe ich  [mm] sin^{2}(\alpha*t) [/mm] um als [mm] (\bruch{1}{2}(1-cos(2\alpha*t)) [/mm]

Dann habe ich f(t)= [mm] \bruch{1}{2}*t*sin(\alpha*t)-\bruch{1}{2}*t*cos(2*\alpha*t) *sin(\alpha*t). [/mm]

Das [mm] \bruch{1}{2}*t*sin(\alpha*t) [/mm] kann ich ja lösen mit dem Ableitungssatz nach der Bildfunktion und wie löse ich [mm] \bruch{1}{2}*t*cos(2*\alpha*t) *sin(\alpha*t)? [/mm]


Bezug
                        
Bezug
Originalfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Do 05.01.2012
Autor: MathePower

Hallo summerlove,

> f(t)= [mm]t*sin^{3}(\alpha*t)[/mm]
>  Danke für die Antwort.
>  
> Also wenn ich [mm]sin^{3}(\alpha*t)[/mm] auseinanderziehe als
>   f(t)= [mm]sin(\alpha*t)* sin^{2}(\alpha*t).[/mm]
>  
> Und dann schreibe ich  [mm]sin^{2}(\alpha*t)[/mm] um als
> [mm](\bruch{1}{2}(1-cos(2\alpha*t))[/mm]
>  
> Dann habe ich f(t)=
> [mm]\bruch{1}{2}*t*sin(\alpha*t)-\bruch{1}{2}*t*cos(2*\alpha*t) *sin(\alpha*t).[/mm]
>  
> Das [mm]\bruch{1}{2}*t*sin(\alpha*t)[/mm] kann ich ja lösen mit dem
> Ableitungssatz nach der Bildfunktion und wie löse ich
> [mm]\bruch{1}{2}*t*cos(2*\alpha*t) *sin(\alpha*t)?[/mm]
>  


Den Ausdruck [mm]\cos\left(2*\alpha*t\right)*\sin\left(\alpha*t\right)[/mm]
kannst Du auch noch anders schreiben.

Betrachte hierzu [mm]\sin\left(2\alpha*t+\alpha*t\right)[/mm] und [mm]\sin\left(2\alpha*t-\alpha*t\right)[/mm].

Eine geeignete Linearkombination ergibt [mm]\cos\left(2*\alpha*t\right)*\sin\left(\alpha*t\right)[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]