www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Ordnung Torsionsmodul
Ordnung Torsionsmodul < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung Torsionsmodul: Idee
Status: (Frage) beantwortet Status 
Datum: 11:59 Di 05.08.2014
Autor: derriemann

Aufgabe
Sei N der von (4, 5, 6) und (9, 8, 7) erzeugte Untermodul von [mm] \IZ^{3} [/mm]
und M := [mm] \IZ^{3}/N. [/mm]
Bestimmen Sie den Rang von M/T(M) und die Ordnung
von T(M).


Hallo,

also ich kenne die Zerlegung M = F [mm] \oplus [/mm] T(M), mit F [mm] \subset [/mm] M freier Untermodul. Nur ist mir leider nicht ganz klar, wie ich hier jetzt genau vorzugehen habe... Würde mich über Tipps freuen :-)

LG

        
Bezug
Ordnung Torsionsmodul: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Fr 08.08.2014
Autor: MaslanyFanclub

Hallo,

> Sei N der von (4, 5, 6) und (9, 8, 7) erzeugte Untermodul
> von [mm]\IZ^{3}[/mm]
>  und M := [mm]\IZ^{3}/N.[/mm]
> Bestimmen Sie den Rang von M/T(M) und die Ordnung
>  von T(M).
>  
> Hallo,
>  
> also ich kenne die Zerlegung M = F [mm]\oplus[/mm] T(M), mit F
> [mm]\subset[/mm] M freier Untermodul. Nur ist mir leider nicht ganz
> klar, wie ich hier jetzt genau vorzugehen habe... Würde
> mich über Tipps freuen :-)
>  
> LG

Mit [mm] $\psi:\mathbb Z^2 \to \mathbb Z^3, \quad x\mapsto \begin{pmatrix} 4 & 9\\ 5 &8 \\6 &7\end{pmatrix} [/mm] x$ ist [mm] $M=\mathbb Z^3/Im (\psi)$. [/mm]
Berechne dann die Smith-Normalform obiger Matrix.
Siehe auch
https://de.wikipedia.org/wiki/Hauptidealring#Endlich_erzeugte_Moduln:_Invariante_Faktoren

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]