www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Optimierung" - Optimierungsproblem mit NB
Optimierungsproblem mit NB < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierungsproblem mit NB: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Fr 08.05.2009
Autor: smarties

Hallo!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich muss eine Optimierungsaufgabe mit einer Ungleichheits- und einer Gleichheitsnebenbedingung lösen und brauche dringend Hilfe. Ich muss
[mm] \sum_{i=2}^{n-2} \| 1/2*(p_i-p_{i-1})+1/2*(p_{i+1}-p_{i})-(p_{i+2}-p_{i+1})\|^2 [/mm]
minimieren, wobei [mm] p_1\in R^3 [/mm] gilt. Müsste ich nur die quadratische Norm minimieren könnte man ja einen der bekannten Ansätze nehmen, jedoch weiß ich nicht welche Lösungsmethode ich verwenden darf wenn ich die Summe der quadratischen Normen simultan minimieren muss. Die Nebenbedingungen sind linear in den Unbekannten [mm] p_i. [/mm] Ich bräuchte ganz dringend eure Hilfe!!
Vielen lieben Dank im Voraus!!


        
Bezug
Optimierungsproblem mit NB: Antwort
Status: (Antwort) fertig Status 
Datum: 03:59 Sa 09.05.2009
Autor: MatthiasKr

Hi,

ich schreib mal, was mir so einfaellt zu der aufgabe, keine ahnung, ob dass wirklich hilfreich ist. Wenn ich das richtig sehe, hast du doch n unbekannte, jeweils aus [mm] $R^3$, [/mm] also im grunde ein optimierungsproblem im [mm] $R^{3n}$. [/mm] Du kannst nun also deine [mm] p_i [/mm] als komponenten eines 3n vektors [mm] $\bf{p}\in R^{3n}$ [/mm] ansehen.
Um das optimierungsproblem zu loesen musst du dann also den gradienten der funktion berechnen, der wiederum ein 3n vektor ist und in dem jeweils die ableitung nach den [mm] p_i [/mm] stehen. Bei der bestimmung des gradienten sollte es hilfreich sein, dass immer nur eine geringe anzahl von summanden von einem bestimmten [mm] p_i [/mm] abhaengen. So solltest du die partiellen ableitungen berechnen koennen.

Die gradienten fuer die NB zu berechnen sollte leicht sein, wenn diese linear sind.

Dann lagrange multiplier ansatz.

hoffe, das hilft dir ein wenig. ;-)

gruss
matthias

> Hallo!
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Ich muss eine Optimierungsaufgabe mit einer Ungleichheits-
> und einer Gleichheitsnebenbedingung lösen und brauche
> dringend Hilfe. Ich muss
>  [mm]\sum_{i=2}^{n-2} \| 1/2*(p_i-p_{i-1})+1/2*(p_{i+1}-p_{i})-(p_{i+2}-p_{i+1})\|^2[/mm]
> minimieren, wobei [mm]p_1\in R^3[/mm] gilt. Müsste ich nur die
> quadratische Norm minimieren könnte man ja einen der
> bekannten Ansätze nehmen, jedoch weiß ich nicht welche
> Lösungsmethode ich verwenden darf wenn ich die Summe der
> quadratischen Normen simultan minimieren muss. Die
> Nebenbedingungen sind linear in den Unbekannten [mm]p_i.[/mm] Ich
> bräuchte ganz dringend eure Hilfe!!
>  Vielen lieben Dank im Voraus!!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]