www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Optimierungsaufgabe
Optimierungsaufgabe < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierungsaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Sa 11.07.2009
Autor: tedd

Aufgabe
Aus einem Baumstamm mit kreisrundem Querschnitt soll bei gegebenem Radius r ein rechteckiger Balken mit maximalem Widerstandsmoment [mm] W=\bruch{b*h^2}{6} [/mm] mit der Breite b und der Höhe h geschnitten werden.
Wie sind b und h zu wählen?

Also sowas fängt man ja sinnvollerweise erstmal mit einer Skizze an:

[Dateianhang nicht öffentlich]

Jetzt kann man versuchen zusammenhänge zwischen den gegebenen Größen zu suchen und da habe ich folgendes gefunden:

[mm] r=\bruch{1}{2}*\sqrt{b^2+h^2} [/mm]
[mm] \gdw h^2=4*r^2-b^2 [/mm]

Für das Widerstandsmoment gilt daher:

[mm] W=\bruch{b*h^2}{6}=\bruch{b*(4*r^2-b^2)}{6} [/mm]
Muss ich dafür dann noch einen Definitionsbereich festlegen?
Der wäre dann denke ich:
[mm] 4*r^2-b^2>0 [/mm]
[mm] \gdw b^2<4*r^2 [/mm]
[mm] \gdw [/mm] b<2*r
Ausserdem muss b >0 sein.
Dann ist [mm] b\in]0;2*r[ [/mm] ?

[mm] W(b)=\bruch{b*(4*r^2-b^2)}{6}=\bruch{4*r^2*b-b^3}{6} [/mm]

Hat jetzt keine Randpunkte und ist überall diff'bar:

[mm] W'(b)=\bruch{4*r^2-3*b^2}{6} [/mm]

W'(b)=0 [mm] \gdw 4*r^2-3*b^2=0 \gdw b=\sqrt{\bruch{4*r^2}{3}} [/mm]

links von [mm] b=\sqrt{\bruch{4*r^2}{3}} [/mm] ist W'(b) positiv, rechts davon negativ, also ist an der Stelle [mm] b=\sqrt{\bruch{4*r^2}{3}} [/mm] ein lokales Maximum.
Links von [mm] b=\sqrt{\bruch{4*r^2}{3}} [/mm] ist die Funktion sogar streng monoton wachsend und rechts davon streng monoton fallend, also ist die gefundene Stelle ein globales Maximum.

Mit [mm] b=\sqrt{\bruch{4*r^2}{3}}=\bruch{2}{\sqrt{3}}*r [/mm] ist

[mm] h^2=4*r^2-\bruch{4*r^2}{3}=\bruch{8}{3}*r^2 \gdw h=\bruch{4}{\sqrt{3}}*r [/mm]

Habe ich alles richtig gemacht?

:-)

Danke und Gruß,
tedd

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Optimierungsaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Sa 11.07.2009
Autor: MathePower

Hallo tedd,

> Aus einem Baumstamm mit kreisrundem Querschnitt soll bei
> gegebenem Radius r ein rechteckiger Balken mit maximalem
> Widerstandsmoment [mm]W=\bruch{b*h^2}{6}[/mm] mit der Breite b und
> der Höhe h geschnitten werden.
>  Wie sind b und h zu wählen?
>  Also sowas fängt man ja sinnvollerweise erstmal mit einer
> Skizze an:
>  
> [Dateianhang nicht öffentlich]
>  
> Jetzt kann man versuchen zusammenhänge zwischen den
> gegebenen Größen zu suchen und da habe ich folgendes
> gefunden:
>  
> [mm]r=\bruch{1}{2}*\sqrt{b^2+h^2}[/mm]
>  [mm]\gdw h^2=4*r^2-b^2[/mm]
>  
> Für das Widerstandsmoment gilt daher:
>  
> [mm]W=\bruch{b*h^2}{6}=\bruch{b*(4*r^2-b^2)}{6}[/mm]
>  Muss ich dafür dann noch einen Definitionsbereich
> festlegen?
>  Der wäre dann denke ich:
>  [mm]4*r^2-b^2>0[/mm]
>  [mm]\gdw b^2<4*r^2[/mm]
>  [mm]\gdw[/mm] b<2*r
>  Ausserdem muss b >0 sein.
>  Dann ist [mm]b\in]0;2*r[[/mm] ?
>  
> [mm]W(b)=\bruch{b*(4*r^2-b^2)}{6}=\bruch{4*r^2*b-b^3}{6}[/mm]
>  
> Hat jetzt keine Randpunkte und ist überall diff'bar:
>  
> [mm]W'(b)=\bruch{4*r^2-3*b^2}{6}[/mm]
>  
> W'(b)=0 [mm]\gdw 4*r^2-3*b^2=0 \gdw b=\sqrt{\bruch{4*r^2}{3}}[/mm]
>  
> links von [mm]b=\sqrt{\bruch{4*r^2}{3}}[/mm] ist W'(b) positiv,
> rechts davon negativ, also ist an der Stelle
> [mm]b=\sqrt{\bruch{4*r^2}{3}}[/mm] ein lokales Maximum.
>  Links von [mm]b=\sqrt{\bruch{4*r^2}{3}}[/mm] ist die Funktion sogar
> streng monoton wachsend und rechts davon streng monoton
> fallend, also ist die gefundene Stelle ein globales
> Maximum.
>  
> Mit [mm]b=\sqrt{\bruch{4*r^2}{3}}=\bruch{2}{\sqrt{3}}*r[/mm] ist
>
> [mm]h^2=4*r^2-\bruch{4*r^2}{3}=\bruch{8}{3}*r^2 \gdw h=\bruch{4}{\sqrt{3}}*r[/mm]
>  
> Habe ich alles richtig gemacht?


Ja, bis auf die letzte Umformung.

Hier muß es heißen:

[mm]h^2=4*r^2-\bruch{4*r^2}{3}=\bruch{8}{3}*r^2 \gdw h=\bruch{\red{2*\wurzel{2}}}{\sqrt{3}}*r[/mm]


>  
> :-)
>  
> Danke und Gruß,
>  tedd


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]