www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Optimierung von 2 konvexen Fkt
Optimierung von 2 konvexen Fkt < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierung von 2 konvexen Fkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:44 Mo 14.12.2009
Autor: Econis

Hallo allerseits,

Ich bin gerade dabei ein kleines Modell zu basteln und bin sehr unsicher ob dass was ich mir denke stimmt. Falls jemand mir dass bestätigen könnte (oder mich darauf hinweisen was ich falsch mache) währe ich sehr dankbar dafür. Das Model ist folgendes:

Es gibt eine konvexe Produktionsfunktion mit Nullstellen an beiden Axen:

(1) f (x,y) =  x + y + [mm] x^a*x^b [/mm] |a,b € [0,1]

und eine Kostenfunktion mit steigenden Kosten bei erhöhter Mischung der Inputs, ausserdem eine Variable c um diese "Mischkosten" später anzupassen und den Effekt zu sehen:

(2) g(x,y) = x + y + (x*y)*(1+c)

Ich würde jetzt gerne zeigen dass es ein inneres Optimum gibt wenn c relativ niedrig ist. Dass sich also beide Funktion im R+ Bereich schneiden (aber nicht auf der Axe)

Die erste Hauptdiagonale meiner Hesse Matrix ist:

(3)  [mm] -a²*x^{a-2}*y^b [/mm] und somit negativ wenn a € [0,1]

Die zweite Hauptidagonale ist:

(4) [mm] (-a²*x^{a-2}*y^b)*(-b²*x^a*x^{b-2}) [/mm] - (a*b*x^(a-1)*y^(b-1)-c)²

und somit tendenziell positiv (in Abhängikeit der Funktion) für kleine c ! (?)

Also gibt es ein Maximum der Funktion, sprich die beiden Funktionen schneiden sich innerhalb von R+ ohne die Axen zu berühren (in diesem Punkt) für kleine c.

Meine Annahme bei der ich mir ziemlich unsicher ist nun die folgende:
Für große c wird (4) negativ (soweit so gut), damit währe die Hesse Matrix positiv semi definit und damit gäbe es ein Minimum. Da beide Funktionen die Axen berühren währe dieser Minimalpunkt auf einer der beiden Achsen. Es würde sich also eine Randlösung ergeben. Spricht da mein Wunschdenken oder ist das tatsächlich so?

Vielen Dank für eure Hilfe!!!

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Optimierung von 2 konvexen Fkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 16.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]