www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Optimierung & Newtonverfahren
Optimierung & Newtonverfahren < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierung & Newtonverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Di 29.11.2005
Autor: Molch

Hallo!

Ich habe mich, leider erfolglos, an folgender Aufgabe versucht:

"An die Parabel [mm] y=1+x^{2} [/mm] wird ein die Abszissenachse berührender kreis mit dem Radius 1 herangeschobe. In welchem Punkt [mm] (x_{1}, y_{1}) [/mm] berührt er die Parabel? Eine sich im Rechengang ergebende nichtlineare Gleichung für eine Unbekannte ist nach dem Newton-Verfahren zu lösen."

Also müsste folglich der Abstand zwischen
[mm] y=1+x^{2} [/mm] und [mm] 1=(x)^{2}+(y-1)^{2} [/mm] minimiert werden, bzw. 0 sein.
Doch wie drücke ich nun die Bedingung für den Abstand aus?

Schlichtes einsetzen der Parabel- in die Kreisgleichung und anschließendes Differenzieren um die notwendige Bed. für einen Extremwert zu erfüllen liefern leider auch kein brauchbares Ergebnis.

Ich wäre für einen Tipp sehr dankbar!

Gruß, Molch

        
Bezug
Optimierung & Newtonverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Do 01.12.2005
Autor: mathemaduenn

Hallo Molch,
[mm] 1=(x-c)^2+(y-1)^2 [/mm] wäre die eigentlich interessierende Gleichung vermutlich. Denn der Kreis soll ja beweglich sein.
Außerdem heißt berühren:
1. gleicher Funktionswert
2. gleiche Ableitung
viele Grüße
mathemaduenn

Bezug
                
Bezug
Optimierung & Newtonverfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Fr 02.12.2005
Autor: Molch

Danke!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]