www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Optimale Lösung eines LUGS
Optimale Lösung eines LUGS < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimale Lösung eines LUGS: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:20 Do 29.01.2009
Autor: Uschel

Aufgabe
Seien A = [mm] \pmat{ -14 & 14 & 10 \\ 2 & 1 & 1 \\ -2 & 5 & 3 \\ -4 & 1 & 1 } [/mm]
          b = [mm] \pmat{ 9 \\ 3 \\ 5 \\ -3 } [/mm]  und
          [mm] \gamma [/mm] (x) = [mm] -x_{1} [/mm] - [mm] 2x_{3} [/mm] +1 für x = [mm] (x_{1} [/mm] , [mm] x_{2} [/mm] , [mm] x_{3} [/mm] )
Frage: Gibt es eine optimale Lösung  für /gamma auf der Lösungsmenge
A*x [mm] \ge [/mm] b ? (Begründung!!)
(Hinweis: z.B. Satz 12.4. Zeigen Sie dazu, dass (1,1,1) eine Lösung von A*x [mm] \ge [/mm] b ist.)

Hallo zusammen.
Wir haben diese Aufgabe vor kurzem in einer Übungsgruppe besprochen und ich konnte sie später trotzdem nicht ohne Hilfe lösen, weil mir einiges einfach noch unklar ist.
Als erstes haben wir den Punkt (1,1,1) untersucht (schließlich ist er ja extra angeben)

A * [mm] \vektor{1\\1\\1\\1} \ge [/mm] b
[mm] \vektor{10\\4\\6\\-2} \ge \vektor{9\\3\\5\\-3} [/mm]
[mm] \vektor{10\\4\\6\\-2} [/mm] - [mm] \vektor{9\\3\\5\\-3} [/mm] = [mm] \vektor{1\\1\\1\\1} [/mm]
[mm] \vektor{1\\1\\1\\1} \ge \vektor{0\\0\\0\\0} [/mm]

Meine Frage hierzu, warum hört man nach [mm] \vektor{10\\4\\6\\-2} \ge \vektor{9\\3\\5\\-3} [/mm] nicht auf? Wozu sind die übrigen Schritte?

Als nächstes haben wir dann B erstellt, wobei wir nun den [mm] \vektor{1\\1\\1\\1} [/mm] als Kontrollspalte benutzen.
Es ergibt sich:

B: = [mm] \pmat{ -14 & 14 & 10 & 1\\ 2 & 1 & 1 & 1\\ -2 & 5 & 3 & 1\\ -4 & 1 & 1 & 1 \\ -1 & 0 & -2 & -2} [/mm]

und die -2 unten rechts erhalten wir einfach dadruch, dass man die Werte aus der Kontrollspalte in die Gewinnfunktion einsetzt. Soweit hab ich Alles verstanden.
Aber wir wissen doch jetzt erst, dass dies EINE, aber vlt nicht die optimale Lösung ist oder verstehe ich das falsch?
Dann habe ich mir Satz 12.4 nochmal angeschaut, der besagt:

Sei u eine Lösung des linearen Ungleichungssystems A*x [mm] \ge [/mm] b mit mxn-Koeffizientenmatrix A. Sei [mm] \gamma [/mm] (x) = g0 + g * x die Gewinnfunktion und B = [mm] \pmat{ A & k \\ g & G} [/mm] die zu u gehörige Ausgangsmatrix.
Sei C eine Matrix, welche aus B durch zulässige Spaltenumformungen hervorgeht. Wenn C einen Spaltenvektor sj mit j [mm] \le [/mm] n hat, dessen Komponenten alle das gleiche Vorzeichen haben und dessen letzte
Komponente von Null verschieden ist, dann gelten folgende Aussagen:

a) Es gibt ein m  [mm] \in F^{n} [/mm] mit  [mm] \gamma [/mm] (m) > g0 und A*m [mm] \ge [/mm] 0

b) [mm] \gamma [/mm] ist auf der Lösungsmenge L von A*x ßge b nach oben unbeschränkt.

Versteh ich das jetzt richtig, dass ich versuchen soll Matrix C zu erzeugen (durch zuläsige Spaltenumformung) in der es einen Spaltenvektor geben soll der durchweg positiv ist und der letzte Eintrag echt positiv, also [mm] \ge [/mm] 0 sein soll?
Aber dann wäre nach b) doch gezeigt, dass es keine optimale Lösung gibt.
Vielleicht tue ich mir mit den ganzen Sätzen und Formeln auch nur unnötig schwer, deswegen würde ich mich über schnelle Hilfe anhand dieses Beispieles freuen.
Mit freundlichen Grüßen
Uschel



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Optimale Lösung eines LUGS: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 06.02.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]