www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Operator stetig
Operator stetig < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Operator stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Fr 01.06.2012
Autor: TheBozz-mismo

Aufgabe
Seien X,Y,Z Banachräume, A ein linearer,stetiger Operator von X nach Y und T ein abgeschlossener,linearer Operator von Y nach Z mit [mm] R(A)\subset [/mm] D(T). Zeige, dass TA:X->Z stetig ist.

Hallo!
Also TA ist ja die Verknüpfung von 2 Operatoren. Von X nach Y ist A nach Vor. stetig, d. h. man muss im Prinzip zeigen, dass der Operator T stetig bzw. beschränkt ist(da die Komposition von 2 stetigen Operatoren wieder stetig ist).
Zum Operator T wissen wir, dass er abgeschlossen ist, d. h. [mm] G(T)=\{(u,T(u)); u\in D(T)\} [/mm] ist abgeschlossen.

Da T abgeschlossen und Y,Z Banachräume, ist G(T) Banachraum.
Mehr fällt mir grad nicht ein.

Kann mir einer helfen?

Vielen Dank schonmal
TheBozz-mismo

        
Bezug
Operator stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Sa 02.06.2012
Autor: fred97


> Seien X,Y,Z Banachräume, A ein linearer,stetiger Operator
> von X nach Y und T ein abgeschlossener,linearer Operator
> von Y nach Z mit [mm]R(A)\subset[/mm] D(T). Zeige, dass TA:X->Z
> stetig ist.
>  Hallo!
>  Also TA ist ja die Verknüpfung von 2 Operatoren. Von X
> nach Y ist A nach Vor. stetig, d. h. man muss im Prinzip
> zeigen, dass der Operator T stetig bzw. beschränkt ist(da
> die Komposition von 2 stetigen Operatoren wieder stetig
> ist).
>  Zum Operator T wissen wir, dass er abgeschlossen ist, d.
> h. [mm]G(T)=\{(u,T(u)); u\in D(T)\}[/mm] ist abgeschlossen.
>  
> Da T abgeschlossen und Y,Z Banachräume, ist G(T)
> Banachraum.
>  Mehr fällt mir grad nicht ein.
>  
> Kann mir einer helfen?

Zeige, dass TA abgeschlossen ist. Da TA auf ganz X def. ist, folgt die Stetigkeit Von TA aus dem Satz vom abgeschlossenen Graphen.

FRED

>  
> Vielen Dank schonmal
>  TheBozz-mismo


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]