www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Olympia-Lotterie
Olympia-Lotterie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Olympia-Lotterie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:24 So 29.10.2006
Autor: Fry

Aufgabe
Bei der Olympia-Lotterie 1971 wurden die 7-ziffrigen Zahlen auf die Art ermittelt, dass aus
einer Trommel, welche je 7 gleichartige Kugeln mit den Ziffern 0 bis 9 enthielt, nach Durchmischen
7 Kugeln gleichzeitig entnommen und mit einer geeigneten Vorrichtung zufällig zu
einer Zahl angeordnet wurden.
a) Widerlegen Sie die Behauptung, dass jede mögliche 7-ziffrige Zahl dieselbe Gewinnchance
hatte. (Geben Sie zunächst ein geeignetes Modell an!)
b) Berechnen Sie die Wahrscheinlichkeit für das Ereignis, dass alle Ziffern gleich sind.
c) Berechnen Sie die Wahrscheinlichkeit für das Ereignis, dass alle Ziffern verschieden sind.
d) Zeigen Sie, dass es genau 15 Sorten von 7-ziffrigen Zahlen mit verschiedenen Gewinnchancen
gab und geben Sie deren Wahrscheinlichkeiten an.

Hallo,

würde mich freuen, wenn ihr meine Lösung zu obiger Aufgabe überprüfen könntet.  Bin mir überhaupt nicht sicher, ob die Ergebnisse stimmen. Würde mich über eure schnelle Hilfe freuen. Danke.

Fry

zu a) z.B.

P((0,0,....,0)) = [mm] \bruch{7!}{\bruch{70!}{63!}} [/mm]
aber
P((1,2,3,4,5,6,7)) = [mm] \bruch{7^{7}}{\bruch{70!}{63!}} [/mm]

b) /c) Ich weiß nicht so recht, wie ich die Ereignisse als Mengen darstellen soll.
Hat einer ne Idee ? A = alle Ziffern gleich B = alle Ziffern verschieden

P(A) = [mm] \bruch{70*6!}{\bruch{70!}{63!}} [/mm]
P(B) = [mm] \bruch{70*63*56*49*42*35*28}{\bruch{70!}{63!}} [/mm]

d) Hab die 15 Fälle gefunden. Hier nur kurz das System:
Beispiel mit den Zahlen 0,1,2.

1) 0,0,0,0,0,0,0 p(w) = [mm] 10*\bruch{7!}{\bruch{70!}{63!}} [/mm]
2) 0,0,0,0,0,0,1 p(w) = [mm] 10*9*\bruch{7!*7}{\bruch{70!}{63!}} [/mm]
3) 0,0,0,0,0,1,1 p(w) = [mm] 10*9*\bruch{7*6*5*4*3*7*6}{\bruch{70!}{63!}} [/mm]
4) 0,0,0,0,1,1,1 p(w) = [mm] 10*9*\bruch{7*5*4*3*7*6*5}{\bruch{70!}{63!}} [/mm]
5) 0,0,0,0,0,1,2 p(w) = [mm] 10*9*8*\bruch{7*6*5*4*3*7*7}{\bruch{70!}{63!}} [/mm]
6) 0,0,0,0,1,1,2 usw.
7) 0,0,0,1,1,1,2 usw.
8) 0,0,0,1,1,2,2 usw.
usw.

Problem: Die Wkeiten sind viel zu klein, als dass ihre Summe 1 ergibt.
Da muss sich als ein Fehler eingeschlichen haben....


        
Bezug
Olympia-Lotterie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Mo 30.10.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]