www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Offene Menge
Offene Menge < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Offene Menge: Hallo
Status: (Frage) beantwortet Status 
Datum: 19:27 Mi 21.11.2012
Autor: looney_tune

Aufgabe
Der Vektorraum [mm] \IR^{n \times n} [/mm] sei mit der von der Norm [mm] \parallel [/mm] . [mm] \parallel_{2} [/mm] :  [mm] \IR^{n \times n} [/mm] --> [mm] \IR, [/mm]
[mm] \parallel (a_{ij})_{i,j}\parallel_{2} [/mm] := [mm] \wurzel{\summe_{i=1}^{n}\summe_{j=1}^{n} a_{ij}^2} [/mm]
induzierten Metrik ausgestattet. Zeige, dass die Menge [mm] GL(n,\IR) \subset \IR^{n \times n} [/mm] der invertierbaren Matrizen offen ist.

Ich weiß gar nicht wie ich mit dieser Aufgabe beginnen soll.
Kann mir jemand weiter helfen?

        
Bezug
Offene Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Mi 21.11.2012
Autor: Helbig

Hallo looney_tune,

> Der Vektorraum [mm]\IR^{n \times n}[/mm] sei mit der von der Norm
> [mm]\parallel[/mm] . [mm]\parallel_{2}[/mm] :  [mm]\IR^{n \times n}[/mm] --> [mm]\IR,[/mm]
>  [mm]\parallel (a_{ij})_{i,j}\parallel_{2}[/mm] :=
> [mm]\wurzel{\summe_{i=1}^{n}\summe_{j=1}^{n} a_{ij}^2}[/mm]
>  
> induzierten Metrik ausgestattet. Zeige, dass die Menge
> [mm]GL(n,\IR) \subset \IR^{n \times n}[/mm] der invertierbaren
> Matrizen offen ist.
>  Ich weiß gar nicht wie ich mit dieser Aufgabe beginnen
> soll.
>  Kann mir jemand weiter helfen?

Beachte, daß die Determinantenfunktion [mm] $\det\colon \IR^{n\times n} \to \IR$ [/mm] stetig ist!

Gruß,
Wolfgang


Bezug
                
Bezug
Offene Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 Mi 21.11.2012
Autor: looney_tune

was bringt es mir denn, wenn die determinantenfunktion stetig ist?

Bezug
                        
Bezug
Offene Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Mi 21.11.2012
Autor: Helbig


> was bringt es mir denn, wenn die determinantenfunktion
> stetig ist?

$A$ ist invertierbar genau dann, wenn [mm] $\det [/mm] A [mm] \ne [/mm] 0$. Das heißt, die Menge der invertierbaren Matrizen ist als Urbild der offenen Menge [mm] $\IR\setminus \{0\}$ [/mm] unter der stetigen Abbildung [mm] $\det$ [/mm] offen.

Gruß,
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]