www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Offene Menge
Offene Menge < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Offene Menge: Frage zu einfachen Beweis
Status: (Frage) beantwortet Status 
Datum: 16:08 So 07.12.2008
Autor: InoX

Also es ist ja bekannt, dass für [mm] (x_1,x_2)\in [0,1]\times [0,1] [/mm] die Menge [mm] (x_1,1]\times [0,1]\cup \{x_1\}\times (x_2,1] [/mm] nicht offen in [mm] [0,1]\times [0,1] [/mm] ist.

Um das zu beweisen, habe ich einfach mal den Punkt [mm] (x_1,1) [/mm] herrausgenommen und gezeigt, dass dieser keine offene Umgebung hat. Gibt es hierfür auch eine offensichtlichere herangehensweise, so dass man auf den ersten Blick erkennen kann, dass diese Menge nicht offen ist. Ich brauche das Resultat für einen Vortrag und wäre froh wenn mir jemand sagen könnte wie ich das den Zuhörern am besten klar machen kann.

Danke,
Martin

        
Bezug
Offene Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 So 07.12.2008
Autor: pelzig

Also in [mm] $\IR^2$ [/mm] mit dem "Standart-Offenheitsbegriff" ist eine Menge [mm] $X\subset IR^2$ [/mm] genau dann offen, wenn [mm] $\pi_1(X)$ [/mm] und [mm] $\pi_2(X)$ [/mm] offen in $IR$ sind. Dabei sind [mm] $\pi_i$ [/mm] die natürlichen Projektionen auf die erste bzw. zweite Komponente.

In diesem Beispiel ist nämlich [mm] $\pi_2((x_1,1]\times [0,1]\cup \{x_1\}\times (x_2,1])=[x_1,1]$ [/mm] abgeschlossen (in [mm] $\IR$). [/mm]

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]